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CHAPTER I. INTRODUCTION AND PRELIMINARIES

Section 1. Examples of Eigenvalue Problems

In-this section w present-several model eigenvalue problems

arising in physics and engineering. Specifically -we-w!-1. discuss."

,)4iafly some important physical interpretations of eigenvalues and

eigenfunctions. Some of the model problems we discuss' here will

serve as illustrative examples in connection with the approximation

methods considered,in Chapter III. We will attempt to provide a

clear understanding of the fundamental ideas, but will not present,

a detailed treatment. For a more complete discussion of the mate-

rial in this section we)refer to Courant-Hilbert (1953].

A. One Dimensional Problems

The Longitudinal Vibration of an Elastic Bar

We are interested in studying the small, longitudinal vibra-

tions of a longitudinally loaded, elastically supported, elastic

bar with masses attached to its ends. The bar is shown in Figure

ELASTIC SUPPORT ELASTIC SUPPORT

END MASS LOAD ELASTIC SUPPORT :II

Figure 1.1. Elastic Bar.
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We now derive the governing differential equation and boundary

conditions for the problem. First we consider the static prob-

lem. Suppose ink

f(x), 0 < x < t, represents the external longitudinal load, with

positive f(x) denoting a force directed to the right,

u(x), 0 < x < f, denotes the displacement of the cross-section of

the bar originally at x, with positive u(x) denoting the

displacement to the right, so that the position of a point

originally at x is x + u(x),

.(x), 0 < x < e, denotes the strain in the x-direction, i.e., the

relative change in the length of the fibers in the bar (c(x)

will be positive if it describes extension),

o c(x), 0 < x < e, denotes the normal stress in the cross-section

at x, i.e., the force per unit area exerted by the portion

of the bar to the right of x on the portion to the left of

(a(x) will be positive if it describes tension),

A(x), 0 < x < e., denotes the area of the cross-section at x,

E(x), 0 < x < t, denotes the modulus of elasticity of the bar at

X ,° ,°'

F(x), 0 < x < e, denotes the internal force acting on the cross-

section at x, i.e., the force exerted by the portion of

the bar to the right of x on the portion to the left, with

positive F(x) denoting a force directed to the right,

p(x), 0 < x < e, denotes the load due to the (continuous) elastic

support, which is assumed to be of the form

P(x) = -c(x)u(x),

where c(x) > 0 is the spring constant of the support (the

3



negative sign indicates that the force is directed opposite

to the displacement), and

m(x), 0 < x < £, denotes the specific mass at x, i.e., the mass

per unit volume at x.

The strain c(x) and the displacement u(x) are related by

duS(x) = (x).

This relation is valid for small displacements, i.e., when !r(x)-

1. The relation between stress and strain is described by the

constituitive law of the material. We are assuming the linear

relation given by Hooke's Law:

7(x) = E(x)r.(x).

Thus, since F(x) = c(x)A(x), we have

F(x) =A(x)E(x)(x)

du

Now the equilibrium condition for the bar is

dF N
dF(x) + f(x) + P(x) = 0,

which, with the use of the relations discussed above, can also be .'

written as

d du
(1.1) - (A(x)E(x)-(x)) + c(x)u(x) = f(x), 0 < x < 4.

This is the governing differential equation.

We consider the three most important types of boundary condi-

tions.

Dirichlet Type

(1.2a) u(O) = a, u(') = a 2

4



Here the displacements of the end points of the bar are given.

Neumann Type

A du du
(1.2b) -F(O) -(AE-) (0) = b1  F(e) = (AE)) = 2

.' .. .

Here the forces at the ends of the bar are given. The different

signs at 0 and f are used to express the outer normal deriva-

tive at the ends of the bar.

Newton Type

du d

(1.2c) -(AEd-u)(O) + ru(0) = c1  (AEd ) (t) += ..u .-
._

where v 1 , ' 2 > 0

Here r 2 is the spring constant of a spring attached to the bar at

x = C and -r2 u( ) is the force exerted on the right end of the '..

bar by the spring. We are thus specifying the sum of the internal

force and the spring force on the right end of the bar. The con-

dition at x = 0 has a similar interpretation.

(1.1) together with one of (1.2a,b,c) determine the displace-

ment u(x) in the static case. We now turn to the dynamic case.

We assume the external load depends on the time t and is ..

represented by f(xt) and suppose a ~b ,ci  in the boundary con- _N.w

ditions depend on t : = ai(t), b= bh(t), C = c(t), i = ,2.

We further suppose the bar is subject to a damping force repre-

sented by R. If u = u(xt) is the displacement at time t,

n d
then from Newton's 2 law we have

(1.3)
9(9U !12u.

-;-( ) (x)-(x,t)) + c(x)u(x,t) = f(x,t) - m(x)A(x)-- (x,t) - R,

0 < X , t > 0. .% X0

5 44
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We next give the boundary conditions in the dynamic case.

The Dirichlet conditions are nearly the same as in the static

case, while the Neumann and Newton conditions require modification

because of the forces exerted on the ends of the bar by the

attached masses.

Dirichlet Type

(1.4a) u(O,t) = a (t), u(e,t) = a 2 (t), t - 0

Neumann Type

n ~." , ,'

[V.AEJ-i)(uti -M -m1 --. ,t) + b (t)

(1.4b)

-2(ft) + b2 (t), t - 0,

where m1 and m 2  are the masses attached to the left and

right ends of the bar, respectively .

Newton Type ,

-AE!-)(0,t) + rU(O,t) - m1 -t(O't) + c1 (t)

(1.4c)
(AEax)(Vt) + 2 u(e-,t) = -m2--n

(AE Watu + UFt , ,t) + c MI) t 0

We remark that we can impose boundary conditions of different

types at the two ends. For example, we could impose a Newton type

condition at 0 and a Dirichlet type at f.",

Finally in this (dynamic) case we need to impose initial

conditions. We specify the initial position and velocity:

fu(x~o) : 1 (x) }-( .5) (x)
(-(xo) = (x) 0 x ' ...

6
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Consider now equations (1.3), with f = R = 0, and one of

the conditions (1.4a,b,c), with a, = a2 = b I = b = c = c = 0.

If we seek separated solutions of the form P.'. -

u(xt) = v(x)w(t),

in which the spatial variable x and the temporal variable t -

are separated, from (1.3) we find that

2d dv )d~w /":

[-d- (A(x)m(x) (x)) + c(x)v(x)]w(t) = -m(x)A(x)v(x) -- (t)dt 2

or

2
- d dvd dw

(A(x)E(x) d(x) + v(x)(t)
__ -__--_(__--_X ))_+_ C(X)V(_ ) dt

(1.6) m(x)A(x)v(x) w(t) 0 < x < C, t - 0.

Imposing the boundary conditions (1.4a,b,c) on u = vw we find

(1.7a) v(o)w(t) = 0, v(t)w(t) = 0, t - 0

F dv --d t i w
-(AE -)(0) at2 (t)

T____ dtm1vI o ) w( t ) "-

(1.7b) 2 .0.wt
dv _d w ,t)

m v() W(t) t 0

22

dv)(0) Ylv(0) - dt
-(AEU-) (0) + I

SlIY(O) w( t)4

(1.7c)

I dv d 2w
(A )(e) + r2v(e) dt2  t 0S m2v(e) wlt)

It is immediate that both sides of equation (1.6) equal a

7' %%7
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constant, which we denote by A. We are thus led to seek a number

A and a function v(x) - 0 so that

d dv
(1.8) -!--(A(x)E(x) -(x)) + c(x)v(x) = km(x)A(x)v(x), 0 < x < 4.

From (1.7abc) we get boundary conditions for v: -

(1.9a) v(0) = v(f) = 0, (Dirichlet type)

dv . 2
-(AE )(0) = \mlv(O)

(1 .9b) (Neumann type)
T- 2~V.."

[(AE- 1(e) = km2v(e), -.-.-.

[ dv-(AE )(0)+ 'V r 1 v(O) = m v(0)

(1.9c (Newton type).L dv
dx)(-) + r 2 v(e) =Am 2 v(q),

The problem of finding I and v(x) - 0 satisfying (1.8) and a

boundary condition (1.9) of Dirichlet, Neumann, or Newton type is

called an eigenvalue problem. is called an eigenvalue and

v(x) a corresponding eigenfunction, or eigenvector, of the prob-

lem, and (X,v) is often called an eigenpair. If k is present

in one or both of the boundary conditions, the problem is referred

to as a Steklov-type eigenvalue problem.

For the sake of definiteness, let us suppose we have a Newton

type boundary condition at 0 and a Dirichlet type at F, and

further assume that mI = 0. Thus we are considering the initial-

boundary value problem

2

Buu

( 1. 4 C )  -(AE Tx)(0,t) + ;,,U(0,t) = 0,-n .,_ ._.-

(1. 4a') U((,) c = 0 t, 0 < '-'."

8
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u(x,O) - %(X)(1 5') ,. '

j(x,0O) = t 2 (x), 0 < x <

The corresponding eigenvalue problem is

d du-- (AE -u) + cv = kmAv, 0 < x < .
(1.) du .

(I.I0) -(AE -)(0) + iv(O) =0 ...

v(,e) = 0.

It is knowp that problems of this type have a sequence of

eigenvalues

(1.11) 0 < k <1 2 -

and corresponding eigenfunction

(1.12) v1 (x), v 2 (x) ..... r

The eigenfunctions satisfy

.' .,

(1.13) [ m(x)A(x).r(x)v (x)dx =
0 ""ij

where 5.= 1 if i = j and i = 0 if i ' j, i.e., they

are orthonormal; in addition they are complete in L i.e., any ..

function h(x) L can be written as
2

(1.14) h(x) = Z civ3 (x)'
J=1 V

where

(1.15) c : mAhv dx

0 o .----- .,.

and the convergence is in the L2 -norm. Regarding (1.11) - (1.15),

9
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see (4.10)- (4.14).

Corresponding to each A * we solve -

2
(1.1 2 w t) + A .w(t) = 0, t > 0

dt

(cf. (1.6)), obtaining

w(t) = w.(t) = a sin /3(t+ J)'

where a. and . are arbitrary. Thus the separated solutions

are given by

(1.17) a.v.(x) sin /AT(t+&.), j = 1,2,...

It is immediate that

(1.18) u(x,t) = ajv (x) sin /T7(t+O.)

j=1

is a solution of (1.3'), (1.4c') , (1.4a') for abitrary a. and

9., provided the series converges appropriately. It remains to

satisfy the initial conditions (1.5'). For this, a. and -J J.'. -

must satisfy

u(xO) = Zja. sin /T v( (x),

(x,O) = aj cos /510v (x) =.

From the complete orthonormality of the v.(x) we see that these
J

two equations uniquely determine a. and 0.. Thus (1.18), with -.4

this choice for a. and 0 j, is the unique solution of (1.3'),

(1.4c'), (1.4a'), (1.5'). : i:,

The simple motions given in (1.17) are called the eigenvi-

brations of (1 .3'), (1. 4c'), (1 .4a'). All the points x of the

10



eigenvibrations vibrate with the same (circular) frequency

(defined to be the number of vibrations per 2v seconds) and

phase displacement /Tre. and the point x vibrates with ampli-

tude proportional to v.(x). Thus /-A is the frequency with '-'

which the j h eigenvibration vibrates and v.(x) gives the basic

shape of the eigenvibration. The amplitude factor a. and 0.

are determined by the initial position and velocity of the eigen- '.

vibration, whereas k. and vj(x) are determined by the physical

process itself, as represented by (1.3'), (1.4c'), and (1.4a').

We have seen that any motion of (1. 3'), (1. 4c'), (1. 4a') can be

written as a sum or superposition of eigenvibrations.

So far we have been dealing with free vibrations, i.e., we

have assumed f(xt) and R in (1.3) are zero. Now we briefly

consider the case when f . 0 and R = 0, i.e., the case of

forced vibrations. If we write

f(x,t) = Zf.(t)vj(x)m(x)A(x),

j=1 .%.

ID.-%

then we easily see that u(x,t) = (t)v (x) is a solution if

.J=l

a':(t) + Xa (t) = f (t).

If, now, f.(t) = sin /Aj(t+e.), then we see that aj (t), and

hence u(x,t), will be unbounded as t-m. This phenomena is

called resonance and f is called a resonant load; the resonant

frequencies are j = 1,2,...

The damping term R could be defined in various ways. For
au

example, we could take R to be pa- , for a constant p, which
a.
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au

would lead to a term of the form 14' in equation (1.3).,

Eigenvalue problems similar to (1.8) and (1.9) or (1.10)

arise in a number of other situations. We now briefly mention

some of them.

The Transverse Vibration of a String

We are interested here in the small, transverse vibration of a

homogeneous string that is stretched between two points a distance

t apart. Gravity is assumed to be negligible and the particles

of the string are assumed to move in a plane. We denote the den-

sity of the string by r and the tension by p. We restrict our

attention to the case of free vibrations. A

If the particles of the string are identified with the num-

bers 0 s x 5 f and if u(x,t) denotes the vertical displacement

of the particle x at time t, then u satisfies

2 2
-pd 2 u(x ' t) = 0ru(x' t) < x < f t > 0

( 1.19 ) 1 at 2  0

u(0,t) = u(e,t), t > 0.

We see that (1.19) is a very special case of (1.3) and (1.4a). Y.
The associated eigenvalue problem is

f 2-C V"(x) = kv(x), 0 < x < t
(1.20)

v(0) = v(e) = 0,

2
where C = p/r. It is easily seen that the eigenvalues and

eigenfunctions of (1.20) can be given explicitly; they are

k 2

and

12N %,
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(1.22) vk(x) = /2/,e sin---, k = 1,2,.....

The entire discussion of the elastic bar - i.e., the discus-

sion of separation of variables, of eigenvalues and eigenfunctions,

and of eigenvibrations - applies to this problem. We note that it

is possible to find the eigenvalues and eigenfunctions explicitly

only in very special situations, roughly, just in the case of

eigenvalue problems for differential equations with constant coef-

ficients in one dimension. In general, one must resort to approx-

imation methods. The discussion of such methods is the main topic

of this article.

Characterization of the Optimal Constant in the Poincare Inequality

The Poincare inequality states that there is a constant C % _

such that

(1.23) J [u(x)]2dx !5 C u,(x)]1 2dx

0 0

for all functions u(x) having a square integrable first deriva-

tive and vanishing at 0 and f. Let us consider the problem of

finding the minimal constant C. We are thus interested in

2~ IVA

u dx

(1.24) C = sup .
u2u (0 u (F =0 (u dx"<u(O)=u(e)=O 0~u V.%

Using the elementary methods of the calculus of variations we find

that the function u achieving the supremum in (1.24) satisfies

C u'v'dx = uvdx

0 0. "

13
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for all v having square integrable first derivatives and vanish-

ing at 0 and e. By integration by parts we then find

= 1u, 0 < x < t

(1.25)
u0) = u(f) = 0.

Thus 1/C is lowest eigenvalue of the eigenvalue problem (1.25),

and the optimal u in (1.24) (which achieves equality in (1.21))

is an associated eigenfunction.

B. Higher Dimensional Problems

The Vibrating Membrane

Consider the small, transverse vibration of a thin membrane

stretched over a bounded region Q in the plane and fixed along

its edges r = 00. The vertical displacement u(x,y,t) of the

point (x,y) in 0 at time t satisfies

2 2 2

(1.26) ax 2  -;t2

{u(x,y,t)-- = O..., (x,y) 0, t 0-O ..;
U(X,~t) 0, (X,y) E: ag, t 0.

As with the vibrating elastic bar or the vibrating string, if we

seek separated solutions of the form u(x,y,t) = v(x,y)w(t), we

are led to the eigenvalue problem of finding k and v(x,y) - 0

satisfying
N1%

(1.27) AV = v, (x y) -

v(x,y) = 0, (x,y) 'E 400, :

and for each eigenpair (A,v) of (1.27), to the differential

equation

14
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(1.28) d (t) + Aw(t) = 0, t > 0,
dt

for w(t) (cf. (1.16)).

It is known that (1.27) has an infinite sequence of eigen-

values

0 < XIs <../+ .
1 2

and corresponding eigenfunctions

v1 (x,y), v2 (x,y)......

The eigenfunctions are complete and orthonormal in L2 (Q).

a v (x,y) sin /X(t+g.), j = 1,2,..., are called eigenvibrations.

is the frequency and vj(x,y) is the shape of the jh.

eigenvibration. All solutions of (1.26) can be obtained as a

superposition of eigenvibrations (cf. (1.18)). We note that if,

instead of fixing the membrane on r, we allowed it to move free-

ly in the vertical direction, then we whould have the Neumann boun-

dary condition n= 0, where 2- denotes the outer normal deri-

vative, instead of the Dirichlet condition u = 0. The approxima-

tion of the eigenpairs of a membrane is discussed in Subsection S".

1O.B., 11.B., 12.A., and 12.B.

The Problem of Heat Conduction

Consider the problem of heat conduction in a body occupying a

region 9 in three-dimensional space. We suppose the temperature .7,

distribution throughout 0 is known at time zero, the temperature

is held at zero on 0Q for all time, and that we want to deter-

mine the temperature u(x,y,z,t) at the point (x,y,z) -- Q at

time t > 0. From the fundamental law of heat conduction we know

15
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(1.29) -r(xyz)iU (x,yz) E0, t > 0

u(x,z,t) = 0, (x,y~z) E C30, t 0

Lu(x,y,z,0) = t(x,y,z), (X,yz) ~

where

f(x,y,z) = the temperature distribution at t =0,

p(x,y,z) = the thermal conductivity of the material at

(X,yZ) ,

and

r(x,y,z) =density of the material times the specific heat of

the material.

If we seek separated solutions

u(x,y,z,t) = v(x,y,z)w(t)

of the differential equation and the boundary conditions in (1.29) .

we are led to the elgenvalue problem

29-49 9v a av) = rv, (x,y,z)
(1.30) ~ (a)- __' 

S

l(x,y,z) =0, (x,y,z) E ao,

and for each eigenpair (1,v) of (1.30) we are led to the equation

(1.31) w' + k~w = 0, t > 0

for w(t) (cf. (1.16) and (1.28)). (1.30) has eigenvalues

0 < A A. ..

1 *2

and eigenfunctions

V2 V2 ....

16
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satisfying

j v vr dx dy dz =6 ij.

Corresponding to each A ,from (1.31) we find w(t) = w(t)=
jJ

a eIjt Thus the separated solutions are given by

a v.j(x,yz)e- kit1,,..

and the solution of (1.29) is

(1.32) u(x,y,Z,t) =v dx dy dzv(-~ze i

(cf. (1.18). We note that from (1.32) and the positivity of the

eigenvalues, one can show that lim u(x,y,z,t) = 0 and that the

rate at which the temperature u decays to zero is largely deter-

mined by ki

The Vibration of an Elastic Solid .

The vibration of an elastic solid 0, the three-dimensional

generalization of the elastic bar, is governed by the Navier-Lame

equations

( akop + ju -X + u
at .' .

ae )2
(1 .33) (+0"+ UA V = -Y + 0 

U

aa 2
(A+(/) '+ /JAW = _Z + P _ '. (X,y,z) E7 Q, t > 0,La~Z at2

where u(x,y,z,t), v(x,y,z,t), and w(x,y,z,t) are the x,y,

and z-components of the displacement of the point (X'y'z) Q

17



-~E-m-97WW~ * ~ ,~r.'~ I~E~E~.P p'z ~P ~ ~ WT WIW : 'W I W v . VW, w-w wv-v- .- W v . W1W W--j'"- . W. V *

a u a v a w
at time t, 0 = -+ + --, X,Y, and Z are the components of

the external force per unit volume acting at (x,y,z), k > 0, and

p > 0 are the Lame elastic constants, and P is the density of

the material.

As in the case of the bar, boundary conditions of various

types may be prescribed. For example, the Dirichlet boundary con-

ditions prescribe the values of u,v, and w on F = aQ. Neumann

conditions are more complicated. Let n be the unit outer normal

to F, let n ,n , and nz  be the xy, and z-components of
x y ' 1 -

n, and let

a = a a a
nx + n + n

be the outer normal derivative. Then define

au au av aw ".I(1.34a) X ken + /37 + l- nx + - n + - n
n x n x ax y Ux z

~3 v t~v Ow(1.34b) Yn =On+ n + a n+ n]
n y aay + [~ x +7 yajy

(13c w 43U Ow+ z
(1. 34c) Z = @n + pa- + P [au n + - n + -w .

n z x z y

The Neumann conditions then consist in prescribing Xn ,Yn  and

Z on the boundary. One can also mix the boundary conditions in
n

various ways, e.g., impose Dirichlet conditions on one part of the

boundary and Neumann conditions on the remainder of the boundary

or prescribe XnI Y and w on r.
nn

The eigenvalue problem associated with (1.33) is given by

+/)L- - lIAU = (.)pu

(1.35) - (+ )a. - /,IAV = (.)rv

L (+p) - - pAw : .)pw, (x,y,z) o,

18 "-'.
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where we have denoted the eigenvalue parameter by , (to avoid

confusion with the Lame constants pe and A), and where here

u,v,w, and 0 denote functions of x,y, and z only, i.e., the

separation of variables has been written as u(x,y,z,t) = u(x,y,z)

T(t), etc. For boundary conditions we can consider any of those

mentioned above. If we consider Dirichlet conditions (u = v w

= 0 on r) we refer to the clamped solid and if we consider

Neumann conditions (X = Y = Z = 0 on r) we refer to then n n

free solid.

The approximation of the eigenvalues of the free L-shaped

panel (a two dimensional analogue of the elastic solid) is treated

in detail in Subsection 1O.A.

The Steklov Eigenvalue Problr-n

The Steklov eigenvalues of the differential operator -A + I

are those numbers A such that for some nonzero u,

-u + u = 0 in 0 .-.

nu U on r =aoO.

Problems of this type, in which the eigenvalue parameter appears

in the boundary condition, arise in a number of applications (cf.

(1.9b) and (1.9c)).
4.,.

The Problem of Stability of a Nonlinear Problem

Consider the quasilinear parabolic problem

,. !au au u

S| A + u- 0, (xy) 0, t > 0

'-ax

Suppose u(x,y) is a stationary solution, i.e., suppose

! .," 19
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-Au + u- = 0, (x,y) Q, Q.

U (x, y) = P(x, y) ,(x, y) a oQ

Then we consider a nearby time-dependent solution V.

u(x,y,z,t) = u(x,y) + w(x,y,t)

and ask whether u is a stable stationary solutions, i.e.,

whether

lim u(x,y,t) = u(xy)

or, equivalently,

lim w(x,y,t) = 0.

We easily see that w satisfies

(1.36) I + Lw + Nw = 0, (x,y) E Q, t > 0

w= 0, (x,y) E ao ".-

where
~aw au

Lw = -Aw + uj- + -£w

and

aw
Nw = w-X. 'S

Conditions ensuring w--,O as t-*o can be given in terms of the

eigenvalues of

Lw = 1w in 0

tw =0 on aO.

'S

In fact, if all the eigenvalues of this problem have positive real ..

parts, then u is asymptotically stable in the L2 norm, i.e.,

there is a constant > 0 such that if
- ,. P .

20d 11 'lr%.
I
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(Q2 (Q

then
W,p~

!w( tk L(0) O as t--,Ko.

2 ~

If the term N in (1.36) is neglected, then this result is simi-

* lar to that mentioned at the end of the discussion of heat coriduc-

tion. Note that L is a nonselfadjoint operator and its eigen-

values will, in general, be complex (cf. Section 3). For further

* detail on this type of stability results see Prodi [1962].

* Id ..
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Section 2. Sobolev Spaces

The natural setting for a discussion of e.genvalue problems

and their approximation is the theory of linear operators on a

Hilbert space. In this section we will sketch the definitions and -.

basic properties of the function spaces we will make use of.

These are mainly the Sobolev and Besov spaces.

nLet 0 be a bounded open subset of R and denote by x =

(x1 ,...,xn) a point in R n . For each integer m 0, the real
n

.(complex) Sobolev space H (0) is defined by

(2.1) Hm = mQ) = {u u L2 (0) V lol <

where L2 (0) denotes the usual space of real (complex) valued

square-integrable functions on 0 equipped with the inner product

(2.2) (uv) = (u,v)L2 (0) J uvdx
20

and norm

2 1/2
(2.3) U 2( )  ( lul dx)

On H (0) we have the inner product

(2.4) ((u,v))m i (_(uv) ) 0 aa5m  a v d

and norm

(2.5) u) = Ilui = Iu; =
HeQ , m m,m um dx)

With this inner product, Hm (Q) is a Hilbert space. Here (t =

( ..... o n ) with the ai a nonnegative integer, ioi 0

01 1011 (1and u = (3 u/axo .... , Ox' "
. We also have the semi-inner pro--

1 n

duct

22
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(2.6) (u,V) = (U,V)m = (uv)m = uavdx
Em ()mm, aImH0

and semi-norm

Ct 2 1/2(2.7) lulm() ulm ul a ul dx)

HO Q = (2() and 'iui ==l l

It is immediate that H (0) = L (Q) and lull =ul

H1uI! If r = aQ is Lipschitz continuous, then Cm(J) is
2

dense in Hm (0). (F is called Lipschitz continuous if it can be

locally represented by a Lipschitz continuous function; see Necas

[1967] for further details.)

1 1H0 (0) is defined as the closure in H (0) of C0(0), the

space of infinitely differentiable functions on Q which vanish

near F. The Poincare inequality, which states that

(2.8) lulo O Clul 1 0 , V u Ez H0(N

shows that 1 is a norm on Ho(Q). H (0) is the closure in

Hm (O) of C 0 (Q). --

If F is Lipschitz continuous, then we can define the space

L2r), which consists of functions u defined on F for which

.... L = (J ul2ds)1/ < x, where ds denotes the surface area.
2 F

L2 (F) is a Hilbert space with inner product (u v) f uvds.
2 (F) F

-~ . -1
It is also known that a function u H (0) has a well-C( fined

restriction to F, denoted by tr u, in the sense of trace: "I .

tr u satisfies

(2.9) !U C:u1' V u H ()
L 2 F) " (1

and

230
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HO(0 ) = u- H ((): u = 0 on F in the sense of trace).

Furthermore, a function u -C (W) is in H (o) if an only if
0

u = 0 for all x .-: F. We note that if F is Lipschitz contin-

uous, then the normal vector n is defined almost everywhere on

ii 2
The outer normal derivative - is defined for u H (U).o n "''''

2 2a
H() = (u - H(Q) : u - 0 on F).H0 Jin b'_ _

We shall occasionally make use of the vector valued Sobolev

spaces (0) which are defined by

mm *,

(2.10) (Q) (U (x) ,... Uk (X)) : u (x) H (o), j = 2...,

and

(2.11) U 2 = u 2 + + 2u O(( m,Q Uk .(J- MO

In the study of eigenvalue problems, central use will be made

of Rellich's theorem (cf. Agmon [19651), which states that every

bounded sequence in H (Q) has a subsequence which converges in

Hi(Q) if j < m, provided Q is a bounded open set in R with

a Lipschitz continuous boundary.

So far we have defined the Sobolev space H (0) only for m

m
an integer. We will sometimes use H ((), for m fractionial -.

and also the Besov spaces, so we now turn to their definition,

using the K-method.

For u (Q) and 0 < t < x set

(2.12) K(u,t) = inf { v + t w
m m+m+v Hm  H
'V+W ---U'. .,

Then for m i . < m l dpfine

24 0-Z--
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%'-a.[ -0 2 d t 1t / 2 ',, .
(2.13) U= uk = uk ( [t K(t,u) 2Udt)0/2

and

(2.14) sup t -(u,t)
Hk(0) O<t<)D

where 0 = k-m. The space

(2.15) Hk (Q) {u m(Q) : Ul, k <r,

is the Sobolev space with fractional order k and

-k m
(2.16) H (0) (u H (0) ,u: k .,

k <H (W

is a Besov space, the one often denoted by 
Bk
2,x

In order to fix these ideas and to obtain a fact we will use

in the sequel (cf. Subsections 1O.A. and 1O.B.), we now consider

the function

u = r for (rO) S = {(re) 0 < r < 1, 0 0 , 2r,,

where -1 < o < 0, (rO) being polar coordinates, and prove *hat

u - H ( S ) . , v ,

Theorem 2.1. For -1 < u < 0, we have

U =r -H (5).

Proof. Let p(x), 0 < x < , be a function having dri'.'ar:';es -

all orders and satisfying

p(x) = 0 for 0 < x < 1 2,

p(x) 1 for 1 < x < ,.

For 0 < '-: 1, define

r

25
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Then we obviously have u1 v+w. Now

2 0[ 2(j+1
v 00r dr

CH S9 0 0

C2o+2

and .

2[lw'2 + w,2+ 13X 12ldx dx
H 1(S) =T

S

2 ow 2 -21wj
I= + j1+ r r drd(0

0 0

=00 IjrI r w dr

*0 j

C r 2 ( 1 1dx r , 2(~1 Idr

6/2 2

r 2j+1di']

with C independent of .Hence

K(u, t) C iQil + t

and thus

26 1
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O<t<l

9N.

% i

IIff < < 1e obiulet hav t-oetVO

K(u,t) = U - C'

H0)
and hence

sup (t (¢(+l)K(u,t)} - C'.

<1~ t< -'-

Therefore .'

u=- sup {t0+K(u,t)) C" < x
1 '\H~l+ j(S) 0<t<c (

and hence u a HI+O(s), as was to be proved.

sup (t, K (u t< "C"

ad hIn a similar way, one can also prove that r d.H (S for

(0 +(

0 > 0, not an integer. Finally we note that r" H (S), but

r H (S) for any : > 0.

For a complete discussion of the Sobolev and Besov spaces we ...

refer to Adams [1975], Necas [1967], and Butzer and Barens (1967].

Remark 2.1. The definition of the Sobolev spaces with fractional

index m has a very simple interpretation. For u to be in

H (S) means that for any 0 < t < -, u can be split into the

sum of a smooth function and a nonsmooth function in a natural

way. We have employed this natural splitting in the proof of

Theorem 2.1 and we will use it in the sequel.

* So far we have considered only one special family of Sobolev

spaces or Sobolev-type spaces. Several other families are impor-
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-tant in various situations. For example, if Q R with 0 --

r3Q, and if 0 < ? < I and m L- 1, we can define

(2.17)

m"t e+ I( 1t I -e % ..
H,' (0) = {u E H (Q) :(iu)r L 2 (0) for i f Ic1 -- m) %

and
I''.

2 2 o1 ?+ iI 2
( U + (a 'u) r

Hm H(Q) ( (1_ )L 2 (Q )H3 { --

2 21/
where r= (x1 + x )/2 Spaces of this kind are called weighted

Sobolev spaces. For more details we refer to Kufner [1985]. Con-

sider the function u r, with 0 < r < 1. One can show that

u E Hy (0), where 0 = {(r,O) 0 < r < 1), for 3 > I-, m - 2,

and C = 2. In fact, since ja u J C( -)r we have

a 3+laj-2 r+3 -2 m, -t
I aur r , and we see that u H (0) for m,

and 3 as given.

We will also have occasion to use countably normed spaces

constructed from Sobolev spaces. For example, consider the space

(2.19) 2 2,2 . o1-2 +3.- Cd (

13 (0) (u H3  (0) (a u)r "Cd.'.' . S 2 ((o )'-J

for IJo > 2, with C and d independent of : *

2It is easy to see that all functions u B 3(Q) are analytic in

) - {0). The function r' considered above belongs to P(0)

for , > I-) . We have here only considered weights with respect

to the origin. More generally, one can consider weights with res-

pect to the vertices of domains with piecewise smooth boundaries.

An important reason for introducing these spaces is to characterize .

the solution (eigenfunctions) of a problem as precisely as possible

28
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by embedding it (them) in as small a space as possible. There are

other classes of function spaces that are important in various

contexts, but we will not go further in this direction.

Remark 2.2. We have followed the usual custom of using the same

notation for real and complex function spaces. It will be clear

from the context which version we are using. See Remark 4.1.

%,
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Section 3. Variational Formulation of Eigenvalue Problems '.?

In Section 1 the eigenvalue problems were stated in classical

form, i.e., we were seeking an eigenvalue and a corresponding

nonzero eigenfunction u(x) such that the eigenvalue equation and

boundary condition were satisfied in the classical pointwise sense.

These problems can alternately be given variational formulations.

Since finite element approximation methods are most naturally

defined in terms of variational formulations we now briefly indi-

cate how eigenvalue problems can be cast in variational form. We

will do this by discussing 2 order elliptic eigenvalue prob-

lems in two dimensions in some detail. We begin by describing

this type of problem.

Consider the problem:

Seek a real or complex number k and a nonzero real or

complex valued function u(x) satisfying

(Lu)(x) = I(Mu)(x), x - :.F
(3.1)

(Bu) (x) = 0, x r =

where 0 is a bounded, open, connected set in R4, and

2 2

(3.2) Lu(x) = - , (ai (x) iu) + b (x ),).u + c(x)1u, ("i

ij=l i=1

where ai (x) = aji(x), bi(x), and c(x) are given real or com-

plex functions on 0,

(3.3) Mu(x) = d(x)u(x),

where d(x) is a given real function which is bounded below by a

positive constant on 0, and

I' 30



or

(3.4) (Bu)(x) = 2
-a. n. u,

i,j=1

where n(x) = (n1 ,n2) is the exterior unit normal to r = a0 at

x. L is assumed to be uniformly strongly elliptic in 0, i.e.,

there is a positive constant a such that

2 2

(3.5) Re a (x) - a a'n 2 .
L.ii iJ a,,j x 0 an V( 1 2)

i,j=l i="

In addition, a ijbi,c, and d are assumed to be bounded and.

measurable. (A portion of the theory of eigenvalue problems can

be developed under the more general hypothesis that d(x) is

merely assumed to be a bounded, measurable, complex function, but

we will not pursue this direction.)

nd
(A,u) is called an eigenpair of the 2 order differential

operator L (relative to the 0" order differential operator

M). If Bu = u, the boundary condition Bu = 0 is the Dirichlet

2

"" condition, and if Bu = - a n the conormal deriva-I i Jn 1i,j=l

tive of u, then Bu = 0 yields the Neumann condition.

It is immediate that all of the examples discussed in Sec-

tion 1 - except the Steklov-type eigenvalue problems and the prob-

lem of the vibration of an elastic solid - are of the form (3.1)

or its one or higher dimensional analogues. In any case, our dis-

cussion of approximation methods will be in terms of an abstract

framework that will cover all the examples.

Let

31
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2 2

(3.6) L v(x) 2, 1(aj1jv) - i'i(Si v ) + cv

i,j=1 i=1

and
2 2 , -Z~ ""

(3.7)= - 2 i j - 2b n v.

i, j=i 1=1 .

L is called the formal adjoint of L. It is an immediate conse-

quence of the divergence theorem that

2 2
(3.8) Luvd± a a9 iy + 2:iuv + cuv)dx + f -vd

Iud ijI ij(1
0 i,j=l i=l r

=JuL vdx + J -vdx - u ,ds

O r ra

for all smooth functions u and v. Hence we have

S(3.9) Jruv dx uL vdx

if either u= v =0 on F or -v = 0 on I"

*1 V
If aij and c are real and b. = 0, then L = L and

---. In this case we say L,MB or, more briefly, L is for-

mall selfadjoint, and we have

(3.10) jd(a'L)uv- dx du 1 Lvdx
0 0

3u av

if either u= v =0 on F or -- =- = 0 on F All of the

examples treated in Section 1 are formally selfadjoint except the

operator arising in the stability analysis of the nonlinear

initial-boundary value problem.

32
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Now we turn to the derivation of a variational formulation

for (3.1). Suppose (A,u(x)) satisfies (3.1) in the classical

sense, i.e., the differential equation and the boundary condition
V,

hold pointwise, and consider first the case of the Dirichlet boun-

dary condition: u(x) = 0 for x E F. We assume Q is a bounded

2open set in R with Lipschitz continuous boundary F. Then,

multiplying (3.1) by v, integrating over 0, and using (3.3)

and (3.8) we find that

(3.14) Ab(u,v) A' duvdx = Luvdx

2 2

a. .&9u .7v +.. b i u + cux

o0 i, j=l i=1'"s"

2 2 -

ai, a y3 ud.v +Lb.c3.uv +cuvjdx
i,j=1 i=1 ~

a(u,v), for all v C1 (0)

that vanish on I' .

a(uv) and b(uv), as defined in (3.14), are bilinear forms

(sometimes referred to as sesquilinear forms in the complex case)

in u and v. They are clearly defined for u,v - C (Q) and, in

fact, a(u,v) is defined for u,v - H (0) and b(u,v) for

0u,v H (0) = L (0). Furthermore, using the fact that a ,b,c,
2 aj 

and d are bounded, it follows from Schwarz's inequality that a

is bounded on H1 () and b is bounded onH (0), i.e., that
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V.
(3.15) !a(u,v) < c !!'u11 ii~ Vu'v E H (0)'

(3.16) Ib~u,v)l s c ;lull 11VlQ, u, v E 0 (0)

We note one further property of the form a(u,v):

a0  2 1
2 !u1 U 1 0 , V u e- H (Q), provided

Re c(x) i 0~ + b~j for all x E~ Q,

(3.17) Re a(u,u) where b max Ib.i(xfl,
XEQ

-=1 ,2

2 > 2 1
a 1u1 1  C[I!u!! V uE H 0 ), provided

bi(x) =0, 1 =1,2, Re c(x) >0.

a 0  here is the ellipticity constant in (3.5); the result follows

directly from (3.5).

1
Since the eigenfunction u vanishes on r, u E H O(Q).

Thus, using (3.15), (3.16), and the fact that (v -- C () v= 0

on F) is dense in H 1 (0), it follows from (3.14) that the

eigenpair (A,u) satisfies

(3.18)fu*E H0 (0), u ' 0

(31)a(u,v) = kb(u,v), V v H 1Q
H0()

(3.18) is called a variational formulation of (3.1). We have

shown that if (1,u) is an eigenpair in the classical sense then

it is an eigenpair in the variational sense. We now show that the

converse is true, provided F,a. .. c, and d are sufficiently
IJ, b

IL smooth.

Suppose (A,u) satisfies (3.18) and suppose in addition Q
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is a bounded open set with Lipschitz continuous boundary F and

that u E C2 (Q). Then from the equation in (3.18) and from (3.8)

we have

(3.19) Luvdx-= a(u,v) + - vds

= a(u,v)

= b(u,v)

= duvdx, V1 v E C (Q) that vanishes on F.

Since v E C ) v 0 on F) is dense in L (0) we see from

(3.19) that

Lu(x) = )Mu(x) xE Q

Also, since F is Lipschitz continuous and u E C (!5) HO(Q) we
0

know that u(x) = 0 for all x e r. Thus we see that (A .u) is

an eigenpair in the classical sense.

We next present conditions that guarantee that u C (0).

From (3.18) we see that u is a weak solution of the boundary

value (source) problem

Lu= f in 0

u on ,

where f = Adu. Using standard regularity results for elliptic

equations we find that u E C (0) provided F,a ij,bi,c, and d

are sufficiently smooth. In the two-dimensional case we are dis-

cussing it is sufficient to assume

F is of class C4

ijb i '- C
3 (0), and

35
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2-c,d C2(Q).

In the general n-dimensional case it is sufficient to assume

* F is of class Ck

a. .b. i rckl (0), and

• c,d -r Ck-2(), where k = In/2] + 3.

For these results we refer to Agmon [1965, Theorems 3.9 and 9.8].

Eigenvalue problems on domains with corners arise in many

applications but are not covered by the above results because of

the requirement that F be smooth. Nevertheless, when 0 has

corners, analogous results in a generalized form involving weighted

Sobolev spaces can be proved for problems with smooth coefficients

* (see Grisvard [1985] and Babuska and Guo [1987]). Furthermore

these results provide information on the behavior of u near the

corners that is important in assessing the accuracy of eigenvalue

approximations. This matter will be taken up in Section 10. We

now briefly outline the extent to which the eigenpair (A,u) of

(3.18) satisfies (3.1) in the classical sense in the case in which

Q is a polygon and L = -A and d(x) = 1. From regularity

results for elliptic equations we conclude that u C (Q-{vertices

of 0)). Thus we see that Lu(x) = AMu(x) for all x -- 0 and

u(x) = 0 for x - F - (vertices of 0). u fails, however, to be

2an eigenfunction in the classical sense in that u C at any

vertex of 0 with interior angle larger than i.

Under the hypothesis sketched above, the classical and varia-

tional formulations of (3.1) are equivalent. For the remainder of

this article, we will take the point of view that our eiqenwa.up

problems are given in variational form. Thus we will :onsider
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problems of the form (3.18), or problems that are generalizations

of the form (3.18); see Section 8.

Consider now the case of the Neumann boundary condition:

-(x) = 0 for x E r. Suppose (k,u) satisfies (3.1) in the clas-

sical sense. Then, using (3.8) we find

kb(u,v) = a(u,v) + -d-

.r vds

= a(u,v), for all v C(0),

and thus, using the fact that C (0) is dense in H (0), we see

that (1,u) satisfies

u FH (0), u # 0
(3.20)

a(uv) = b(u,v) V v E H (0).

(3.20) is a variational form for (3.1) with the Neumann condition.

2-Now suppose (A,u) satisfies (3.20) and assume u - C (0). From

(3.20) and (3.8) we obtain

Luvdx = a(uv) + u vdx

e Jr
(3.21) u vds

= b(u,v) + d-

= duvdx + vds, V v C'(Q )
0 r

Taking v - C (0) which vanish on r we find that

Lu(x) = Au(x), V x ,. .

Thus (3.21) reduces to

.
37N
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S-U vds = 0, v = C (9)-Jr

which implies that T 0 on r. Thus we have shown that (,u)

satisfies (3.1) in the classical sense. As with the Dirichlet

condition, the analysis is valid under appropriate smoothness

assumptions on r,a. ,bic, and d. We will not state these inaj

detail.

Note that the Neumann boundary condition is not explicitly

stated in (3.20). It is, however, implicitly contained in (3.20).
We refer to the Neumann condition as a natural boundary condition, , 5

in contrast to the Dirichlet condition which is referred to as an

essential boundary condition, and which is explicitly contained in

the variational formulation (3.18). The fact that the Neumann con-

dition is natural has important implications for the approximation

of eigenvalues; see Remark 10.5.

In summary, for (3.1) we get one of the following forms:

Problem 1: Dirichlet boundary condition

Seek A ,u , 0 satisfying

f 1u H0(0H 1
01

a(u,v) I b(u,v), V v H0(""

Problem 2: Neumann boundary condition

Seek A ,u 0 satisfying

u E H(Q)
H1",

a(u,v) = Ab(u,v), V v H (Q)

We will sometimes refer to (A ,u) as an eigenpair of the form a

38



relative to the form b. Regarding the forms a and b we assume

(3.15) - (3.17) hold.

In a similar way, many other problems - including all of the

examples discussed in Section 1 - can be given variational formu-

lations. This is done for a number of problems in Chapter III.

We mention in particular the eigenvalue problems corresponding to

the vibration of a free L-shaped panel (a two dimentional ana-

logue of the elastic solid).

Finally we wish to make one further point regarding varia-

tional formulations of eigenvalue problems, namely, that a given
%-

C eigenvalue problem can often be given a variety of different

variational formulations and that some of these may lead to more

effective finite element methods than others. We illustrate the

possibility of various variational formulations by considering the

simple model problem

-(a(x)u')' + cu =u, 0 < x <1

" (3.22)
u(O) = u(M) = 0.

This has already been cast into the variational form

Seek A,u * 0 satisfying
(3.23) u E H (0,1)

01
a(u,v) = Ib(u,v), V v Ho(0,1),

where
1

a(u,v) = (au'v' + cuv)dx

0

and
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4.%

b(u,v) = uv dx -

are bounded bilinear forms in H H An alternate formulation
0 0.

is

Seek k, 0 Pd u L2 (0,1) satisfying(3.24) 2'

la (u,v) = b (u,v), V v E H2(0,1) H (0,1) ,

where

a (u,v) = u[-(av')' + cv]dx .4'

0

and

blUv) Juvdx
0

2 1 a1.'1

are bounded bilinear forms on L [H ( 0,1) H(, . (3.23) and

(3.24) are equivalent in the sense that (1,u) is an eigenpair of

one if and only if it is an eigenpair of the other.
'-.

Another formulation is obtained as follows. If we let a =

au', then (3.22) can be written as a first order system of equa-

t ions,

-C' + cu = ku

(3.25) u - = 0

u(0) = u(1) = 0. V

-- (3.25) can then be given the variational formulation,

(Seek A,(r,u) - L2 (0,1)-Ho(0,1) satisfying
(3.26) ta2 (a,u,,i,,v) = Ab 2 (aU.'/ v). ( ' .V )'- L 2(0.1)-H (O.1).

-a,
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where .

a2 (a,u, ,v) = (cv + CUV + - a)dx

0

and ...

b lU,u, ,v) = uvdx. p1 -
0

A 1

a 2 and b2 are bounded bilinear forms on L2 ×xH0 . (3.22) and

(3.25) are equivalent in the sense that if (X,u) is an eigenpair

of (3.22) and a = au', then (X,(u,c)) is an eigenpair of

(3.25), and if (X,(a,u)) is an eigenpair of (3.25), then (A,u)

is one of (3.22) and a = au'. (3.25) and (3.26) are called mixed

formulations of the eigenvalue problem (3.22); see Section 11. We

can also write (3.22) in the form

(3.27) t: Iu) L2 (O,1I×H1(o,1), (au) ( (0,0)

(3.27) A(Y, ?) + B(ip,u) = 0, V V L2 (0,1)

B(a,v) - cuv dx =- uv dx, V v E Ho ,
0 0

where %

1

A(caz) = dx

and 0,-.'...

B(a,v) = - v dx.

0

In Chapter III we will consider further examples of variation-

al formulations and show how they can be used to define a variety

of finite methods.
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Section 4. Properties of Eigenvalue Problems

In this section we discuss the basic properties of eigenvalue

problems. As in Section 3 this discussion will be in terms of

n d2 order elliptic eigenvalue problems. .

We thus consider the problem (3.1) in variational form:

{Seek k, 0 # u E H satisfying
*(4.1)

a(u,v) = kb(u,v), V v e H,%

1 1 '.%

where H H 0 (Q) for Dirichlet boundary conditions and H =H (Q)
*0

for Neumann conditions. The forms a(-,-) and b(-,) are assumed

to satisfy

(4.2) Ia(u,v)l !5 C !lull 1Q!vII1  V u'v E H,

(4.3) Ib(u,v)I !5 C !lull 00 HIv!I 0  V Uv H,

and

(4.4) Re a(u,u) 2! 2dl V u -E H ,

where a > 0. Sufficient conditions for (4.2) - (4.4) to hold

were given in Section 3; cf. (3.15) -(3.17).

For the study of (4.1) it is useful to introduce the operator

T H 0(0) o* H defined by

Tf E: H
(4.5)t

a(Tf,v) =b(f,v), V v EH.

T is the solution operator for the boundary value (source) problem

rLu df in 0
(4.6)

LBu = 0 on F,

i.e., u =Tf solves (4.6). Thus T is the inverse of the dif-
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ferential operator L, considered on functions that satisfy the

boundary conditions. It follows immediately from (4.2) - (4.4)

and the Riesz representation theorem in the special case in which

a(",-) is an inner product on H or the Lax-Milgram theorem (Lax

and Milgram [1954]) in the general case, that (4.5) has a unique

0solution Tf for each f H (Q) and that

C2  0
(4.7) 1:Tf!., O  _ - 0 f H ( ),.

i.e., T H (0) -M H is bounded. In Section 2 we noted that H

0is compactly embedded in H (9), provided F is Lipschitz con-

tinuous (Rellich's theorem). From this fact and (4.7) we see that

0 0
T : (0) -- H (0) is a compact operator. We can also view T

as an operator on H; we will, in fact, mainly consider T on

H. Another application of Rellich's theorem shows that T H -- H

is compact.

It follows immediately from (4.1) and (4.5) that (k,u) is

an eigenpair of (4.1) (or of L) if and only if

TU = Tu, u # 0,

i.e., if and only if (it = - ,u) is an eigenpair of T. Through

this correspondence, properties of the eigenvalue problem (4.1)

can be derived from the spectral theory for compact operators. A

complete development of this theory can be found in Dunford and

Schwartz [1958, 1963). We now give a brief sketch of it; a slight- A.d

ly more complete treatment is given in Section 6. We present this ..

theory under the assumption that the space H is complex. This

leads to the simplest general statement of the theory. In the

special case in which T is selfadjoint, H can be taken to be
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real or complex. We will specialize to the selfadjoint case later.

p Denote by p(T) the resolvent set of T, i.e., the set

p(T) = (z : z E C the complex numbers, (z-T) l

exists as a bounded operator on H),

and by a(T) the spectrum of T, i.e., the set 7(T) = C\p(T).

G(T) is countable with no nonzero limit points; nonzero numbers

in a(T) are eigenvalues; and if zero is in a(T), it may or may

not be an eigenvalue. Let 0 * p E (T). The space N(p-T) of

eigenvectors corresponding to p is finite dimensional; its

dimension is called the (geometric) multiplicity of p.

Now suppose L is formally selfadjoint. Then it follows

immediately from their definitions that a(u,v) and b(u,v)

satisfy

(4.8a) a(u,v) = a(v,u), V u,v E H,

(4.8b) b(u,v) = b(v,u), V u,v E (Q),

i.e., a and b are symmetric (or Hermitian) forms. Thus from

(4.2) - (4.4) we see that a(u,v) is an inner product on H that

is equivalent to ((u,v)) 1 ,. In a similar way we see that b(u,v)

is an inner product on HO(0) that is equivalent to (uv)o,0 ,.

(recall that d(x) is bounded above and is bounded below by a

positive constant). It follows from (4.8) that

(4.9a) a(Tu,v) = a(u,Tv), V u,v E H,

0 1(4.9b) b(Tu,v) = b(u,Tv), V u,v E: H (Q),

i.e., T, considered as an operator on H, is selfadjoint with

respect to a(u,v), and, considered as an operator on H(), is

selfadjoint with respect to b(uv). (We have previously noted in
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11
(3. 10) that b(a Luv) = b(u, Lv) if u = v = 0 on F or if

u v ./a = 0 on F, provided L is formally selfadjoint.)(91 C) t'

From the fact that T is selfadjoint on H it follows that

the eigenvalues of T are real and the eigenfunctions correspond-

ing to distinct eigenvalues are orthogonal with respect to a(u,v).

We noted above that T is compact on H and it follows from

(4.5) that T is positive definite. Thus T will have a count-

ably infinite sequence of eigenvalues

0 / " 2 1 °o

and associated eigenfunctions

u 1 ,u 2 -..-

which satisfy

alui'u ) = ib(ui'u )= &iJ"

It is further known that the eigenfunctions are complete in

L (0 ) , i.e., that '.

(4.10) u = cjuj, V u L 2(Q)

J=1

where
r

(4.11) c = b(u,u) = duu dx,

and convergence is in either the L2 norm or the norm u b

y'b(u,u). (4.11) converges in the H-norm for u H.

Now the spectral properties of (4.1) (or of L) can be

inferred from these facts by recalling that the eigenvalues of

(4.1) (or L) are the reciprocals ot those of T and that (4.1)

and T have the same eigenfunctions. Thus, if L is formally
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selfadjoint, then (4.1) (or L) has eigenvalues

(4.12) 0 < A 2 S .... +OD

and corresponding eigenfunctions

(4.13) U1 ,U2 ....

satisfying

(4.14) a(ui,u.) = l.b(u,uj = 6id.

1 J 1 i ij.

In the sequence A2 eigenvalues are repeated according to ' ,

their (geometric) multiplicity. The properties of eigenvalues and

eigenfunctions used in Section 1 in the discussion of separation ,%IF

of variables (cf. (1.11) - (1.15)) all follow from the properties -

we have sketched here. J

Although our discussion has been in terms of 2 order

elliptic problems, it it immediate that the results hold for any

eigenvalue problem in variational form provided the bilinear forms

are symmetric and satisfy (4.2) - (4.4). We will refer to this as

the selfadjoint, positive definite case. In Section 8 this, as

well as a more general, class of variationally formulated eigen-

value problems is discussed.

Remark 4.1. The eigenvalues of selfadjoint eigenvalue 
problems

are real and the eigenfunctions may be taken 
to be real. Thus ,

these problems may be formulated in terms of real function spaces.

Nonselfadjoint eigenvalue problems, on the other hand, may have

complex eigenvalues and complex eigenfunctions, and are formulated

in terms of complex spaces. 2
We end this section with a discussion of the regularity of 7.

the eigenfunctions of the 2" d order elliptic operator L. L is ..
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not assumed to be formally selfadjoint here.

Theorem 4.1. Suppose for k :f 2,

* r = ao is of class Ck

• ai ,b. --- (0), and1,J a

c,d -- ck-2(Q)

Then all eigenfunctions of L (see (3.2)) lie in H (Q) and *

lu Ckk/2 u 1,2,....u3 k,Q - Cj 1  j'u , =. i j o o , j ,2. . .,

Proof. This result is a direct consequence of standard results on

the regularity of solutions of elliptic boundary value problems.

In particular, we refer to Agmon (1965, Theorem 9.8].

Theorem 4.2. Suppose A

F is of class C, and

a ijbi,cd - C (Q).

Then u Cx(Q) for j = 1,2,.....

Proof. This result follows directly from Theorem 4.1.

Theorem 4.3. Suppose S

r aO is analytic, and

• aij,bic,d are analytic on 0.

Then u. is analytic on ) for each j.

Proof. For a proof of this result see Morrey [1966, Section 5.7].

In practice most of the domains of interest have piecewise

analytic boundaries. Let us mention a result for such domains.
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Theorem 4.4. Suppose -

20 c R,

r r is piecewise analytic, and

Sai,b ,cd are analytic on - (vertices of O).
..... e

Then every eigenfunction of L is analytic in 0 - U (vertices),

2and moreover, belongs to the space 18(0), for properly chosen .,139
Proof. This theorem follows from the results in Babuska and Guo

[1987a].

Remark 4.2. Assume that Lu = -Au, Q is a polygon, and the boun-

dary conditions are of Dirichlet type. If ) is a convex poly-

2
gon, then the eigenfunctions u E H (0), and if ( is a noncon-

k 1vex polygon, then u e H (0) H 0 ), where k 1+1, with a

the maximal interior angle of the vertices of 0.

For a comprehensive treatment of regularity results for prob-

lems on domains with corners, we refer to Grisvard [1985].
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Section 5. A Brief Overview of the Finite Element Method for

Eigenvalue Approximation

In this section we give a brief overview of the use of finite

element methods for approximating eigenvalues and eigenfunctions

of differential operators. We will restrict the discussion to a

simple model problem in one dimension and its approximation by the

simplest type of finite element method.

Consider the selfadjoint eigenvalue problem

(Lu)(x) = -(a(x)u')' + c(x)u = kd(x)u, 0 < x < .

(51 u(O) = u(1) = 0,

1O0 0where a E C [0,e], c,dE C [0,e], and

0 < a 0 _ a(x), 0 s c(x), and 0 < d 0_ d(x) for 0 5 x s,

(cf. (3.1) - (3.4)). As indicated in Section 3, this problem has

the variational characterization

u E~ H 1(0,)
0

(5.2) 1
a(u,v) = Xb(u,v), V v E H0(0,.),

where

a(u,v) = a (x) u'v'dx
J

and

b(u,v) = duvdx..'--

(5.1) (or (5.2)) has a sequence of eigenvalues

0 < A ./ + .

1 2 ...
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and corresponding eigenfunctions

u I ,u2 ...

satisfying

d(x)u u.dx .6i.

0

On [Oe] consider an arbitrary mesh

0 XO < X < . < x

where n = n(A) is a positive integer, and let

S = (U U E C[O,-], u(O) U = 0,
h

U is linear on I, j = In... n),

where h. = x. - x and I. = (x x.) for j i......n

j-1 J i-iJ

and h h(A) = max h S is an (n-l)-dimensional subspace ofj

Ho(O,j). The pairs (A,u) have been characterized in (5.2) as

eigenpairs of the bilinear form a(u,v) relative to the form
1 1 "-<

b(u,v) over the space H0 (O,e)-H 0 (O,f). We now consider eigen-

pairs of a(u,v) relative to b(u,v) over the space Sh Sh ,

i.e., we consider the eigenvalue problem,

Seek 1h' 0 X u :- Sh satisfying .
(5.3) t ..a(uh v) = Xhb(Uhv), V/ U - Sh """

and then view the eigenpairs of (5.3) as approximations to those

of (5.2). (huh) is called a finite element (Galerkin) approxi-

mation to (A,u). A wide variety of finite element methods for

eigenvalue problems will be introduced and analyzed in Chapters

III. Here we will outline the general features of these methods

by examining the method (5.3) as it applies to (5.1). ..1]
50



Since Sh is finite dimensional, (5.3) is equivalent to a
h~

generalized matrix eigenvalue problem. In fact, if , .... n-1
[i n-1 ,[

is a basis for S then it is easily see that h U z C,
ish'h'h Y %

is an eigenpair of (5.3) if and only if 
j=-

(5.4) h =.h

{z 0,

T
where z (z 1,...,z and

A = (A) with A.. a(o.,o

B = (B.), with B.. =b(oo
V.

(5.3) (respectively, (5.4)) has eigenvalues

0" <_ Ik

l,h 2,h ... n-l,h

and corresponding eigenfunctions

U1 h .. n-,h (respectively, z h = (z .h...z.,' n hj ,h j , lj' ,n-i, h ' :

j = 1......n-i),

satisfying

du u dx =. . (respectively, k z Bzh=TI

i h h jh ih h j,h .

We further note that if we choose as basis functions the usual hat .

functions determined by
:.>- ..

0i(x ) = i.-.-"

then A and B are sparse; in fact, they are tridiagonal. !40

easily see that the three nonzero diagonals are given by
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xa x

-11 -1+
(5.5a) A h. h I a(x)dx+h. h. (x -x)(x-x.)c(x)cix

1,+ -2 1 i a +lJ i+1 a

(5.5b) A. h h. a(x)dx + h.i jx~ a(x)dx

" h(x-X. 1  c(x)dx

1 i1
2 2

a+1 1+1

x. .

(5.5c) Aj ~~ =h. h j a(x)dx

a-i i

x~

-1 -1
+ h. hxx.(x -x_)(x)dxd

-16a -1 i+ I i i1

x .

x. X
2 2d'd- 2  j2

(5.6b) Bh = (x-x i 1) dx~x. -i+ (x + I d(x)dx

(5.6c) B. = 1h i 1 (x1-x)(x-x i 1 )d(x)dx.

Nowi we specialize (5.1) to the vibrating string problem dis-

cussed in Section 1, i.e., we let a(x) = p = the tension of the

string, c(x) = 0, and d(x) = r =the density of the string. We

also suppose the mesh is uniform, i.e., we let x. iin01 we

then have h =h. fn .It is easily seen from (5.5a) -(5.6c)
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2 -1 0

-1 2 -

(5.7) A = ph -

0 -1 2 -1

-1 2j

and

4 1 0

1 4 1

(5.8) B rh K-

1 4 1
1 4

If the integrals defining the Bij are approximated by the trape-

zoid quadrature rule, then instead of the matrix B we would

obtain the matrix

(59) B =rhI

and instead of (5.4) we would have

(5.10) Az = )Z. N,

We finally note that the eigenvalues and eigenvectors of

(5.4) and (5.10) can, in this special case, be explicitly found.

The eigenvalues of (5.4) are given by

-2 Jn h 7 p ,j(5.11) 1j,h = 6h -(1 ) (2+ cos ) pr-1, j =1,2, . n-1,

and those of (5.10) by

(5.12) Aj,h =  2h(I cos -,) pr, j = ,2,...,n-1.

The unnormalized eigenvectors of both problems are given by
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(5.13) Z jh (jl1h*-~zjn. ,h)

where

(51)z =sin Jnkh
(5.14) j,k,he jk=1,..,n.

The eigenvalues and eigenfunctions of (5.1), in this case,

are given by*1-

22
er

and

(5.16) U (x) ersin -,j= 1,2,....

From (5.11) and (5.15) we see that *

.44 6
(5.17) A -h = 'h+ i rph+ = (h)

j~~h j 2re4  360re6

and from (5.12) and (5.15) we see that S

4~ 44 .2 6 6 42
(5.18) A j Jh P2e h +... 0(h)

12rf 360rt

From (5.13), (5.14), and (5.16) we see that, neglecting the nor-

malizing factors, the eigenvector z h consists of the values of

J~

(5.17) shows that the eigenvalue error k. - is 0(h )
j,h i

Thus the small eigenvalues of (5.3) (or of (5.4)) appro::imate the

eigenvalues of (5.2), but ttie larger ones do not since k -'j

is small only if j 2h is small. If, for example, j n1/2

2
then j h is of order one and we would not expect A ~ to be

j ,h j
small. Thus only a small percentage of the elgenvalues of (5.4)

are of interest. This observation influences the selection of

numerical methods for the extraction of the eigenvalues of (5.4).
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We also note that (5.17) and (5.18 show that X, X. jj,h ?j kj,h

for h small. It is known that k !5 for all h; cf.j j ,h ",. -

(8.42).

A Physical Interpretation of the Finite Element Eigenvalue Problem

We consider here the vibration of a weightless elastic string

loaded with several point masses. Suppose we have a weightless A'

elastic string of length C loaded with n-i particles of mass

m at distances en - , 2tn ...,(n-1)tn from one end and fixed

at both ends. Gravity is assumed to be negligible and the par-

ticles are assumed to move in a plane. We shall study the small

free vibrations of this system of n-i degree of freedom.

Let p denote the tension in the string and let h = n.

If qi(t) denotes the vertical displacement of the it h particle,

the particles being numbered from the left (see Figure 5.1), then

the equation of motion for the i particle is easily seen to be

(5.19) -mqi(t) = -P 1 , =- ,

where we assume qo = n= 0.

I 2 3 4 n-2 n-I nC , , s.... ..
0x

HI "" "

Figure 5.1. Elastic String with Point Masses.
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If we seek separated solutions of the form . %

q1 (t) = zlq(t)

q n-i(t)= Zn- q(t)

or, in vector form,

q(t) =zq(t),

in which the (discrete) spatial variable j and the temporal

variable t are separated, we find that

-2z +Zi-l-2 i+Zi+ 1  .%
-mziq"(t) = h q(t)

ah

or

z i-2z +Z
i zi+.

h zq"(t) for all i and t.
mz q(t)

Both members of this equation must equal a constant, which we

denote by 1. We are thus led to seek (kz * 0) such that ",.-"

P(-z _ + 2z = m i i = 1, .. n-1, -
2z i  i+ m

i.e., to seek eigenpairs z) of the matrix

2 -1 0

-1 2 -1

(5.20) ph -1  I'

-1 2 -1

-1 2 1 ,. , .

relative to the matrix mI, and, for each eigenvalue , solu-

tions to the differential oqutio:,n .
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(5.21) q"(t) + A q(t) 0, t > 0.

The matrix (5.20) is positive definite. Thus it has n-I

eigenvalues

S1,h 2,h . n-1,h

and corresponding eigenvectors 1h'''*Dnlh' which satisfyzl~h .... Znl~h  whih stisf "a.

-*Tki,h mzh zjh = 6 .

Zlh .... Zn-..h thus form an orthonormal basis (i.e., are .

complete) in (n-l)-dimensional space. Corresponding to ,h'

the solutions of (5.21) are given by

q(t) = q.(t) = a sin /j, h(t+eJ),
J 

-
where a. and 6. are arbitrary. Thus the separated solutions

are given by

(5.22) z haj sin ( t4hj), j = 1,...,n-1. -

As with the vibrating string, it is easily seen that all solu-

tion of (5.19) can be written as the superposition of the separated

solutions (5.22). These simple motions are called the eigenvibra-

tions. The components of the jth eigenvibration all vibrate with

some circular frequency and phase displacement J, 0

andth cmpnetsar ' j,h j,
and the components are proportional to the components of z h

- . .th Ia.

Thus ,-j is the frequency and zjh the shape of the .

eigenvibrat ion.

A complete discussion of the vibration of a weightless elastic

string loaded with several point masses can be found in Courant-

Hilbert (1953] and Synge and Griffith (1959].
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We now draw a parallel with the finite element problem (5.10).

It follows immediately from (5.7), (5.9), and (5.20) that the

eigenvalue problem that we obtained, i.e., the problem of finding ,

the eigenpairs of the matrix in (5.20) relative to mI, is iden-

tical to the eigenvalue problem (5.10) provided m = rh = ren - .

We have thus arrived at the following physical interpretation of

(5.10): Consider the problem of a vibrating string with density

r and tension p. Divide the total mass re of the string into

n-i particles of mass m = rn -1 , which are placed at the points

xI , ... ,Xnit and two particles of mass rt(2n) - , which are

I nn
placed at x and xn . Then the eigenvalue problem corresponding

to this system is identical to the problem (5.10) arrived at by

approximating (5.2) by the finite element method (5.3), and then

approximating the matrix B by B via the trapezoid rule. Thus

the finite element eigenvalue problem (5.10) is the same as the

eigenvalue problem that arises when the mass of the string is

"lumped" as indicated above.

The matrix A in (5.7) is called the stiffness matrix and B

in (5.8) is called the mass matrix. Because of the physical anal-

ogy we have noted, B is called the lumped mass matr-ix and, in

contrast, B is sometimes referred to as the consistent mass

matrix.

•-I..- I
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CHAPTER II. ABSTRACT SPECTRAL APPROXIMATION RESULTS

In this chapter we present the abstract spectral approximation

results we will use in the sequel. .

Section 6. Survey of Spectral Theory for Compact Operators

Since the differential operators we consider have compact

inverses, our approximation results will be developed for the

class of compact operators. We turn now to a survey of the spec-

tral theory of compact operators. A complete development of this -

theory can be found in Dunford and Schwartz [1963, Section XI.9].

Let A : X ---* X be a compact operator on a complex Banach

space X with norm !I.1 = 'I.. We denote by o(A) the resol-

vent set of A, i.e., the set

p(A) = {z: z e C- the complex numbers, (z-A) exists "..

as a bounded operator on X),

and by a(A) the spectrum of A, i.e., the set a(A) = C'\p(A).

For any z E p(A), Rz(A) = (z-A) is the resolvent 9perator.

o(A) is countable with no nonzero limit points; nonzero numbers

in (T(A) are eigenvalues; and if zero is in 7(A), it may or may

not be an eigenvalue.

Let p c (T(A) be nonzero. There is a smallest integer ,

called the ascent of p-A, such that N((#-A)a) = N((p-A)a+,

where N denotes the null space. N((p-A) ) is finite dimension-

0
al and m = dim N((ji-A) ) is called the algebraic multiplicity of

p. The vectors in N((I/-A) ) are called genperalized eigfenvectors

of A corresponding to A. The order of a generalized eigenvec-

tor u is the smallest integer J such that u N((!,-A) ) • The .-
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generalized eigenvectors of order 1, i.e., the vectors in

N(y-A), are, of course, the eigenvectors of A corresponding to

P . The geometric multiplicity of v is equal to dim N(q-A), and

is less than or equal to the algebraic multiplicity. The ascent

of p-A is one and the two multiplicities are equal if X is a

Hilbert space and A is selfadjoint; in this case the eigenvalues

are real. If p is an eigenvalue of A and f is a correspond-

ing eigenvector, we will often refer to (p,f) as an eigenpair of

A.

Throughout this section we will consider a compact operator .

T : X ---* X and a family of compact operators Th : X --+ X, 0 .< h

<1 , such that Th--+ T in norm as h% 0. Let P be anon-

zero eigenvalue of T with algebraic multiplicities m. Let F

be a circle in the complex plane centered at p which lies in

p(T) and which encloses no other points of a(T). The spectral

projection associated with T and p is defined by

E = E(p) 2,iJ Rz(T)dz"

E is a projection onto the space of generalized eigenvectors

associated with p and T, i.e., R(E) = N((p-T)a), where R

denotes the range. For h sufficiently small, r c P(Th) and

the spectral projection

E = (,) = . I R (T )dz
h h 2Tri z h

r
exists, Eh converges to E in norm, and dim R(Eh(')) =

dim R(E(p)) = m. Eh is the spectral prpjection associated with

Th and the eLqenvalues of T which lie in " and is a projec-h

60

7 %.r



.-J.

tion onto the direct sum of the spaces of generalized eigenvectors

corresponding to these eigenvalues, i.e.,

R(Eh) = N((p(h)-Th) p(h)),

p(h) e(Th), p(h) inside r

where h is the ascent of p(h)-Th Thus, counting according,./p ( h) h' .

to algebraic multiplicities, there are m eigenvalues of Th in

r; we denote these by p1 (h),...-,Pm(h). Furthermore, if r' is

another circle centered at p with an arbitrarily small radius,

we see that pl(h),...,p (h) are all inside of r' for h suf-

ficiently small, i.e., lim p (h) = P for j = 1,....m.
h-0 J

R(E) and R(Eh) are invariant subspaces for T and Th ,

respectively, and TE = ET and ThEh = EhTh. {R (Th }  z E F, h

small) is bounded.

If p is an eigenvalue of T with algebraic multiplicity

m, then p is an eigenvalue with algebraic multiplicity m of

the adjoint operator T' on the dual space X'. The ascent of

p-T' will be a. E' will be the projection operator associated

with T' and p; likewise E' will be the projection operator

associated with T' and 1i (h) ,... (h). If f,- X and f'-
h h I

X', we denote the value of the linear functional f' at f by

< f ,f'> .

T' here is the Banach adjoint. If X = H is a Hilbert

space, we would naturally work with the Hilbert adjoint T

which acts on H. Then pA would be an eigenvalue of T if and

only if p is an eigenvalue of T

Given two closed subspaces M and N of X, we define
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6(M,N) = sup dist(x,N) and (M,N) = max(8(M,N),6(N,M)). F(M,N)

XE: MxM 1

is called the gap between M and N. The gap provides a natural

way in which to formulate results on the approximation of gener- I

alized eigenvectors. We will need the following

Theorem 6.1. If dim M = dim N < ,, then

: 6(N,M) is 6(M,N)[1-6(M,N)]""

For a discussion of this result and the result that 6(N,M) =

6(M,N) if X = H is a Hilbert space and 6(MN) < 1, we refer

to Kato [1958]. .9.

S- %
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Section 7. Fundamental Results on Spectral Approximation

In this section we present estimates which show how the

eigenvalues and generalized eigenvectors of T are approximated

by those of T Estimates for this type of approximation were

obtained by Vainikko [1964, 1967, 1970], Bramble and Osborn [1973],

and Osborn [1975]; our presentation follows Osborn (1975]. We

refer also to Chatelin [1973, 1981], Grigorieff [1975 a,b,c],

Chatelin and Lemordant [1978], Stummel (1977], and to the excellent

and comprehensive monograph of Chatelin (1983]. Let p be a non-

zero eigenvalue of T with algebraic multiplicity m and assume

the ascent of i-T is a. Let p 1(h),..... m(h) be the eigen- .
values of T that converge to p.

h

Theorem 7.1. There is a constant C independent of h, such

that

(7.1) 6( , E),R(Eh)) < C!!(TTh)IR(E).

for small h, where (T-Th) IR(E) denotes the restriction of

T-T to R(E).
h

Proof. For f c R(E) with ilfil = 1 we have ilf-Ehf1i = I(E-Eh)f. ..- *

< I!E-E h! Thus, since Eh converges to E in norm,

' lim 8(R(E),R(Eh)) 0 0. Using Theorem 6.1, with M = R(E) and
h-O

N = R(Eh). we thus have

6(R(Eh ) ,R(E)) 6(R(E) ,R(Eh))[I-6IR(E) ,RIEh) ....-

26 (R(E),R(Eh))

and hence

(7.2) (S(R(E),R(Eh)) < 2F(R(E),R(Eh))
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for small h.

Now for f R(E) we have

Ilf-EfEh = = 12 [Rz(T)-Rz(Th]fdz -

rr= T2.--- Rz (Th) (T-Th) Rz (T) fdzi.,

and hence, recalling that R(E) is invariant for T and thus for

Rz(T ) ,".
z

(7.3) jjf-Ehf~l-- length(F) suplIRz(Th)1111(T-T)R supR (T) Ii .

1 27 gtYU sup~R z 1h (E)! z~r z

As noted above, sup !R (Th)l is bounded in h. Thus from (7.2)Z r "z h .,.
zEr

and (7.3) we have

6(R(E),R(Eh)) <CI (T-Th) IR(E)I,

where

C= length(V) sup !Rz (Th)! sup !!R (T)I!.
zr zEr Z

O<h

Remark 7.1. The proof of Theorem 7.1 also shows that

II (E-Eh ) 'R(E) < CI (T-Th) IR(E) '

Although each of the eigenvalues P (h) ...... um(h) is close to

p for small h, their arithmetic mean is generally a closer ap-

proximation to p (cf. Bramble and Osborn [1973]). Thus we define

m

p(h) = (h)
m ~

Out next theorem gives an estimate for ,,-i,(h). <.,
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Theorem 7.2. Let , .,b be any basis for R(E) and let

.0' be the dual basis in R(E'), as defined in the proof

to follow. Then there is a constant C, independent of h, such

that

m

"K (7.4) Ip-p(h)j ZI<(T-Th) .0>I+C,(T-ThlR(E) (T'-ThIR(Ea)

j=1

Proof. For small h, the operator EhIR(E) R(E) --oR(Eh) is

. one-to-one since iE-E - 0 and E f = 0, f R(E) implies

h h

.f = Ef-Ehf. ! EEh' f, and EhIR(E) is onto since

-1
[ dim R(Eh) =dim R(E) = m. Thus (hRE) :R(h--RE) s

.*- defined; we write Eh' for (EhIR(E)) -I  For h sufficiently

small and f R(E) with f! = 1 we have

1 - Eh f = '!Ef, - E fl . E-Eh' < 1/2

and hence EhfIk 2 1/2. f . This implies E is bounded in h.
h h

We note that EhEh is the identity on R(E) and Eh E is the
hhh h h

• "- identity on R(E). Now we define Th EhThEhR(E) (E)
h hR(E)

-R(E).

Using the fact that R(Eh) is invariant for Th we see that

I,.. a(Th) {p1 (h),..., (h)) and that the algebraic (geometric, res-

pectively) multiplicity of any /,j(h) as an eigenvalue of T is
Jh

equal to its algebraic (geometric, respectively) multiplicity as

Vo an eigenvalue of Th. Letting T = TIR(E) we likewise see that

(7(T) {p}. Thus trace T = m/i and trace Th  mpt(h) and, since

T and T act on the same space, we can write
h

S (7 5) 1-,h
(7.5p-16(h) = trace(T-T
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Let pi ..... 1m be a basis for R(E) and let ...... ,' be
m m

the dual basis to ol ..... 0m Then from (7.5) we get1
m V

(7.6) p-p(h) ml trace(TTh) _ l <(TTh)cjI%> "

Here each ' is an element of R(E)', the dual space of R(E),3

but we can extend each o'. to all of X as follows. Since X =
J

R(E) -D N(E), any f X can be written as f = g+h with g

R(E) and h c N(E). Define <fo'> = <g,%'.>. Clearly o', so

extended, is bounded, i.e., o' X'. Now <f, (I-T')e .> =J J

<(0)-T)a f,O' .> vanishes for all f. This follows from the obser-J

vation that it obviously vanishes for f r R(E) = N((/i-T)U) and

it vanishes for f - N(E) since N(E) is invariant for pi-T.

Thus we have shown that 0 ...... o' - R(E').
1 m

Using the facts that ThE = E T and E E is the iden-
h h h h n n

tity on R(E), we have

.o'.> = <T .-E T E o

hj j h h hh h

Let Lh  E E Lh  is the projection on R(E) along NWEh. ,

Hence L is the projection on N(Eh) =R(Eh) along R(E) =

N (E' ) .Thus %

-1.i

(7.8) <(ElEh- I) (T-Th) > < <(Lh-I) (T-Th) j (E'-Eh), > ..

LetLh= h Eh h is th prjcto on R(E alnhN

From (7.8), the boundedness of Lh and Remark 7.1 (applied Ic-

T' and {T')) we have
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h) 'R(E') j jI

Finally, (7.6), (7.7), and (7.9) yield the desired result.

Remark 7.2. Our treatment of the term <(E'Eh- I)(T-Th)0 (P,>,

which differs from that in Osborn [1975], was suggested by

.4 Descioux, Nassif, and Rappaz [1978b]. -

Remark 7.3. A slight modification of the proof of Theorem 7.2 %.

shows that for any 1 !5, m, [<(T-Th)0 0 >1 is bounded by

C5 where
h'm

1<IeT-T )0 0'>j I-TR('

h a Y(hT, h) 'R(E)' (T'-T 1  '('
i ,j=1

Noting that .,0'.>) is a matrix representation of T-~Th
j, ah

we see that

rz (7.10) T -T C6
h h

Since it is immediate that

Jpu11j!trace(-TH TT
m (Thf T~h4

from (7.10) we get

(7.11) Ivi(h) I C6n

an estimate that is similar to, and of equal use in applications

as, (7.4).
as

* We also have

Ill ~I Z.-~h Itrace(+ 1 -Tj I
m m h
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T -T

= T (TTh) T

hT h h

Chh
SC T h-r T _

Hence we see that

(7.12) I ' 1 ICh

m h

It is also known that

• ,(7.13) I/u-pj(h)I CT-Th -

for any 1- jsm. Hence

(7.14) Ip-p.(h)I' C5 .
.h'

(7.14) is established directly in Theorem 7.3. We note, however,

that the proof of Theorem 7.3 is closely related to one of the

ways of proving (7.13).

Remark 7.4. It follows immediately from (7.4) that

I p (h)l - C' (T-Th)IR(E) .

tv However, the second term on the right side of (7.4) is of higher

order than (T-Th)IR(E) , namely of order
apliaios Z(-T).,'. sfore

(T-Th)IR(E) (T'-Th)R(E) We will also see that in a large -6
m

variety of applications, <(T-Th)o.,o'.> is of higher order

j=1-.

than (T-Th)IR(E) .

In addition to estimating p-,(h) we may estimate --!,,h
'-.., ..

for each j.

68 -



Theorem 7.3. Let 1 be the ascent of !/-T. Let P.... be

mm~~any basis for R(E) and let 01 ..... 0 be the dual basis. Then ,

there is a constant C such that

m

(7.15) 1l-C((h) - C{ !<(T-Th)0i, >!

1/ol

(T-Th)IR(E) T-T)IR(E,) , j =

Proof. For each h, p.(h) is one of the eigenvalues of T . Let

ThW = p.(h)wh , wh = 1. We can choose wh -r N(( -T') ) in such

a way that <= 1 and the norms *iw': are bounded in h.

First, using the Hahn-Banach Theorem, choose wh  R(E)' such

that <wh,W > = 1 and 'Wh, = 1; then extend w' to all of X
h' h

as in the proof of Theorem 7.2. w , so extended will be in

R(E') and satisfy ;:wh < E Now, noting that (T'-/ )Uw =0

we have

(7.16)

1/1-/l (h) " = I<(t'-/. (h) )"w W >,

< <( - j(h)) l (p-T) whWh>j ,

= < 2. (l-pj (h)) j (j-T) ' -  ( (hl-T)WhW >.

j =0

J 0 - i(h)lj  max <(/I (h)-T)WhO'> -T' w h." j=O "-R (E') ,' = "i
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For any 0' R(E') with .;0': = 1,

(7.17)

i M <(j(h)-T)Wh¢> T <ThT)wh 01>1 "

= I<Eh Eh(Th-T)wh 0>1

= I<(T-T )wh 0'> + <(Eh Eh I)(T-T )wh,0'>l

< 1<(Th-T)Wh,0'>I + C!.(T-Th)IR(E) (T'-T )IR(E0)

There is obviously a constant C' such that -'

(7.18) 1<(Th-TW, '> - C' I<(ThT)0,0,.>"h - -~ h p h" ,-"

i, j=1

for all wh E R(E) and O' c R(E') with Whi = i': = 1. From

(7.16) - (7.18) we get the desired result.

Theorem 7.1 shows how the generalized eigenvectors of T are
approximated by those of Th.Our next result concerns the proxi-

mity of certain elements of R(Eh) to certain elements of R(E).

It shows, for example, that eigenvectors of Th are close to .:

eigenvectors of T.

Theorem 7.4. Let ,u(h) be an eigenvalue of Th  such that

lim jp(h) = p. Suppose for each h that wh is a unit vector
h- 0

k
satisfying (p(h)-Th) wh = 0 for some positive integer k

Then, for any integer i with k a -, there is a vector uh

such that (p-T) uh = 0 and

(C;-k+ 1 )/, "hh-
(7.19) u C, (T-Th)IR(E)

Proof. Since N((/'-T)) is finite dimensional, there is a closed

subspace M of X such that X = N((ji-T) ) M. For y

70A
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A.

R( (-T) ) the equation (.-T) x = y is uniquely solvable in M.

Thus (-T) !M M- R(,(1-T) ) is one-to-one and onto. Hence
-I : ?

(/-T)'( R((pI-T) -- M exists and, by the closed graph
A...

theorem, is bounded. Thus there is a constant C such that f

C: C(M-T) f: for all f --M .

Set uh = Pwh , where P is the projection on N((gi-T)

along M. Then (p-T) u= 0 and wh-U l- M, and hence

(7.20) Wh-Uhi - Cj! (p-T)t(w -

By Theorem 7.1 there are vectors uh c R(E) such that

iWh-Uh1 < C' : (T-T )  R E .-
whuh h CE

Hence there is a constant C" such that

!! [ (p-T) - ( -Th)4  ]-

,.. 4:-i .

(7.21) (P-Th)J (T-Th)(p-T) :  D h-- u) + Uh]

j=0
~~~< C"'(T-Th R( ) --

Since k - 4,

f-i

ew
,.7..u (I H h) (/j(h) -Th wh

j=0

(7.22) = ,,
(722 - )(2(-u(h)) (P(h)-Th) h

j -k+1
C." Ili-p (h) -

t Combining (7.20) - (7.22) we get

Wh-Uh C (u/-T) (wh-Uh)
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- (p-T) w h ",
= C,: [ (- -T) f- ( -Th ] + (. -Th -

4"

= ~ LP~ ~~h) Jh + u~h Wh

C[C": (T-T) IR(E)!' + C"Ip-p(h) j4 k+l] -.

The result now follows immediately from Theorem 7.3.

Remark 7.5. If X = H is a Hilbert space, we let T and Th

denote the Hilbert adjoints of T and Th , respectively. In -f"

Theorems 7.2 and 7.3 we would let 01.. ' be an orthonormal

basis for R(E) and let 0. E 0. Then 01 ... om N((T
J J*

and trace (T-Th) = ((T-Th)0 j , 0 ) ,where =

denotes the inner product on H, and with only minor modifica-

tions all the results of this section remain valid.

We end this section by specializing the results in Theorems

7.1 - 7.4 to the case where X = H is a Hilbert space and T and

Th  are selfadjoint. If p is a nonzero eigenvalue of T, then,

as noted above, the ascent a, of /p-T is one and the algebraic

and geometric multiplicities of p are equal. Likewise the

eigenvalues M.(h) of Th which converge to p have equal alge-

braic and geometric multiplicities. t and Ai(h) are, of

course, real.

Thus, under the present hypotheses, Theorems 7.2 and 7.3 give

the estimate

%" m

IM-P>(h)1 C((T-Th)OiloJ + (T-Th)IR(E) 2 j ... .

[ i,j~l

' Now consider Theorem 7.4 in the selfadjoint case. Suppose
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1-k

P (h) is an eigenvalue of T converging to /u. If w is a
h h

unit eigenvector of Th corresponding to /(h), then it follows

immediately from Theorem 7.1 and the definition of 6(R(E),R(Eh))

that there is an eigenvector uh of T corresponding to pi such

that
a,?

u-w C (-
h- h ( h)IR(E).

This is Theorem 7.4 in the case ri = 1. We further note that one P

may assume :Uh = 1. From Theorem 7.1 we can also conclude that
hF

if u is a unit eigenvector of T corresponding to p then

there is a unit eigenvector wh R(Eh) of T such that

'.PU -W h C I(T -T h) R E '
:,A h'h'IR(E)

Compare the discussion of the Ritz method near the end of Section

8.

Remark 7.6. In the selfadjoint case one may assume the Hilbert

space H is real (cf. Remark 4.1). Starting with a real space H

we can in the usual way obtain a complex space by complexifying.
1 [R(d z ad 11 '

Then the contour integrals R (T)dz and I(Th)dz,

which are the fundamental tools in the analysis, can be introduced

and the results derived. The results will be in the complex

context but can immediately be translated to the real context.

Remark 7.7. Results for noncompact operators T which parallel

those in this section were proved by Descloux, Nassif, and Rappaz

(1978a,b]. See Subsection 13.D.
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Section 8. Spectral Approximation of Variationally Formulated

Eigenvalue Problems

As explained in Section 3, eigenvalue problems can be given

variational formulations. For the most part, we will consider

eigenvalue problems formulated in this manner. In this section we

will first sketch the functional analysis framework for variation-

ally formulated eigenvalue problems and then discuss their approx-

imation. Results of the type presented in this section specifi-

cally Theorems 8.1 and 8.3, were proved by Babuska and Aziz (1973,

Chapter 12] and Fix (1973] for the case of an eigenvalue with mul-

tiplicity one; in the general case they were proved by Kolata

[1978]. Our treatment is similar to Kolata's.

Let H and H be complex Hilbert spaces with inner pro-
1 2

ducts and norms ('" and and ) and res- .
1 2 2'

pectively. Let a(-,-) be a bilinear (or sesquilinear) form on

H *.H satisfying .
1 2

(8.1) !a(u,v)! C U, v 2' u H Vv'7 H2,

(8.2) inf sup Ia(u,v) = a > 0,
u7 H v w H

1 2
:U;'1 =1 'v 2=

1 2

and

(8.3) supla(u,v) l > 0, V v e H2 with v - 0.
v--H1

The Riesz representation theorem and (8.1) imply that there

is a bounded linear map A from H to H such that a(u,v) = ."
1 2

(Au,v)2  for all u E H i t v H 2. The adjoint A' is a bounded A

map from H to H satisfying a(u,v) = (u,A'v) for all u'
2 1 1

* Hi v- H .* (8.1), (8.2), arnd (8.3) imply that A is an isomor-
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phism of H onto H2 . In fact, in the presense of (8.1), (8.2)

and (8.3) hold if and only if A is an isomorphism, cf. Babuska

[1971] and Babuska and Aziz [1973, Chapter 5]. Using the fact that

4A A is an isomorphism if and only if A' is an isomorphism we see

that in the presence of (8.1), (8.2) and (8.3) hold if and only if

(8.4) inf sup la(uv)I o > 0
vH uE H

2 1

2=1

and

(8.5) sup Ia(u,v) I > 0, V u E H with u 0.
22

(8.2) and (8.3) (or (8.4) and (8.5)) are called the inf-sup con-

ditions.

Suppose . 1  is a second norm on H which is compact with

respect to . i.e., every sequence in H which is bounded

in . has a subsequence which is Cauchy in Let b(u,v)
be I11

be a bilinear form on H gH 2 satisfying

(8.6) Ib(u,v)I l 02 :uI'hvi , u'. H1 , v H2 .
2 1' ' "

We remark that in many applications the form b(u,v) is defined

on wI'w 2, where

H w I , with a compact imbedding,

H2  w2  with a bounded imbedding,

and satisfies

(8.7) !b(u,v)! f C2  u ' V!; w, uW2

[w

If . = W then it is immediate that i is compact

with respect to 1 and that (8.6) holds.
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It is shown in Babuska (1971] and Babuska and Aziz (1973,

* Chapter 5] that (8.1) -(8.3) imply there are unique bounded
operators T :H H and T H -- H satisfying1 2*

(8.8) a(Tu,v) =b(u,v), V u E H1, V vyE: 2'

a(u,T~v) =b(u,v), V u E i V v H 2 *

Furthermore

(8.9) ;TuUi < -11u ' u E: H

Ifu. i a bounded sequence in Htthen, since 'is

compact with respect to i*!1, we know here is a subsequence u.

that is Cauchy in !!-!ii It then follows immediately from (8.10),

applie to uthat Tu. isCauchy, and hence convergent,

in H .* Thus T :H 1-*- H 1is compact. It is immediate that

a(Tu,v) = a(u,T~v). The operator T * is related to T ,the

usual a:jo::: of T on H1, by the transformation T A'T A' ~

T an * are compact.

A cople numer is called an eigenvalue of the form a

relative to the form b if there is a nonzero vector u -H 1,

called an associated eigenvector, satisfying

(8.10) a(u,v) = \b(u,v), V v EH

It is easily seen from (8.8) that (A,u) satisfies (8.10) if and

-1
only if ATu = u, i.e., if and only if (A u) is an eigenpair

of the compact operator T. (8.10) is referred to as a variation-

ally~ posed ejienalue piroblem (c.(3.18)). The notions of ascent,

L generalized eigenvector, and algebraic and geometric multiplicities

* are defined in terms of T. The generalized eigenvectors of T
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corresponding to X can, however, be characterized in terms of the

forms a(.,.) and b(.,.). u j  is a generalized eigenvector of

order j > 1 if and only if a(u ,v) = kb(u j v) + \a(u v) for

-~ j-1
4e all v H2 , where u is a generalized eigenvector of order

-1T* * .

j-1. Since T -ITA' A', it is immediate that ((T.) = c(T )

and that N)}'-T*) A' 1 From this we see that

the generalized eigenvectors of T* have a similar characteriza-
tion to those of T, namely, a(u,v Ab(u,v ) + a(u,v for

.1,1all u z H1 . In particular, (N-,v) is an eigenpair of T* if

and only if a(u,v) = Ab(u,v) for all u H1 , i.e., (k,v) is

an adjoint eigenpair of (8.10).

In order to construct approximations to the eigenvalues and

eigenvectors of (8.10) we select finite dimensional subspaces

S I,h  H 1 and $2,h c H2' indexed by a parameter h, that sat-

isfy

(8.11) inf sup !a(u,v)I '3 = 13(h) > 0
uES1,h v H2,h

u'= Vi 21
U~l= I Vl2=l

and

(8.12) sup ja(uv)l > 0, for each v E S2 ,h with v 0.
U 1l,h

' We also assume

-1(8.13) for every u H 1 lim '3(h) inf 'u-? = 0.
1.h-0 -S Ih

We note that if dim S = dim S then (8.12) follows from
1,h 2,h'

(8.11). We assume dim S1, h = dim S2, h  for the remainder of this

article. S h and S2,h are referred to as test and trial

spaces, respectively, and, if they consist of piecewise polynomial

functions they are called finite element (approximation) spaces.
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K'_'

(8.11) is referred to as the discrete inf-sup condition. 'N1

We then consider eigenpairs of the form a relative to the

form b, but now restricted to S S -hi '
h2,h' i.e. pairs (Ahuh)' h

where Xh is a number and 0 x uh E S ,h , satisfying

(8.14) a(uh,v) = hb(uh,v), V v E S2, h '

and use kh and uh as approximations to A and u, respec-

tively. (8.14) is called a variational approximation method or

Galerkin method for (8.10) in general and, if S and S
1,h 2,h

consist of piecewise polynomial functions; it is called a finite

element method. Since N = dim S1h = dim S2 h < O, (8.14) is

equivalent to a matrix eigenvalue problem. In fact, if 0 ,o

and v .... lipN are bases for S and S , respectively, then
N ,h 2,h'..

(-hkUh = z 9 is an eigenpair of (8.14) if and only if

j=1

(8.15) Az h Bz,

Twhere z =(zl .... z)
1 N

A = (Ai.) A.. = a(O .,"-. J 1'

and

- B = S = j,

(h,uh) is an eigenpair of (8.14) if and only if (h .Uh)

is an eigenpair of the compact operator T H S defined
h 1 1,hdeid

"'U by

(8.16) a(Thu,v) = b(u,v), IV u H- i v S 2h 2i',h"

The operator T can be written as P T , where P is the pro-
h h' h

jection of H1 onto S, h  defined by
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K h
u  

H 1 S 2

(8.17) a(P uv) = a(u,v), V u H, V S S
h2,h a,

Using the central result in Babuska (1971] and Babuska and Aziz

(1973, Chapter 6], it follows from (8.1) - (8.3), (8.11), and (8.17)

that

U-PhUi (1 + (h) inf ui
t'-S 1,h

Thus from (8.13) we see that P h-- I pointwise. Since T is

compact, T = P T --.T in norm on H
h h 1'

Let k be an eigenvalue of (8.10) with algebraic multipli-

city m, by which we mean that A is an eigenvalue of T with .-

algebraic multiplicity m. Let a = ascent of I -T. Since Th

-- T in norm, m eigenvalues X1 (h),. , (h) of (8.14) will

converge to A. The A (h) are counted according to the alge-3|

braic multiplicities of the pi.(h) = A (h) as eigenvalues of

T h  Let

(8.18) M M(A) = (u u a generalized eigenvector of (8.10)

corresponding to k, !u, = 1),

(8.19) M = M (k) = (v v a generalized adjoint eigenvector of

(8.10) corresponding to A, v2=

and

(8.20) Mh = Mh(A) = (u u in the direct sum of the generalized

eigenspace of (8.14) corresponding to the

eigenvalues A .(h) that converge to

A ,iu I  1),
4 1

and define

v'A
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.4

4..

(8.21) 0= ') sup inf u-,
h h uM(A) I 5

1 h 1,

and

(8.22) = k sup inf v-2,h h 2
m* w-M* (A) 77 ES

2, h

Let M(k) = R(E) and Mh( ) = R(Eh).

We now state and prove four results which correspond to

Theorems 7.1 - 7.4. Let a denote the ascent of -1-T.

Theorem 8.1. There is a constant C such that

(8.23) 6 (M(X),h(X)) _A C3(h)- 1 h.

Theorem 8.2. There is a constant C such that

m
1 k (h)-') -- 1 *(8.24) 1 -( .7 < h) h h'

j=1

Theorem 8.3. There is a constant C such that

(8.25) fl.-A (h)l C[3(h) 1 h .
]

Theorem 8.4. Let A(h) be an eigenvalue of (8.14) such that

lim ' (h) = k. Suppose for each h that wh is a unit vector
h-0

1 ksatisfying (X(h) -T)wh = 0 for some positive integer k ,.

Then, for any integer f with k F -5 a, there is a vector uh
such that (A-lT) u 0 and

h
< (, (h -1 ) ( -k+1 ) /(.

(8.26) u w Ch-(hh
hI h

Proofs. The eigenvalues and generalized eigenvectors of (8.10)

and (8.14) have been characterized in terms of the compact opera-
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"..

tors T and Th and we know that Th -- T in norm. Thus we can
apply the results in Section 7, with X H and T and T as

=1 h

defined in (8.8) and (8.16), to estimate the eigenvalue and eigen-

vector errors. Note that M = R(E) - (unit sphere in H1 ), where

E is the spectral projection associated wiht T and k , and

Mh(A) = R(Eh) (unit sphere in H1 ) where Eh is the spectral
-1

projection associated with Th and . (h), j Consi-
(m

der first the proofs of Theorems 7.1 and 7.4. These results will

follow immediately from Theorems 7.1 and 7.4, respectively, if we

show that

(8.27) ,(T-Th)lR(E)I -. C/3(h) h.- h4
4. h*

From Babuska [1971] and Babuska and Aziz [1973, Chapter 6] and

(8.1) - (8.3), (8.6), (8.8), (8.11), and (8.16) we haveU
(T-Th)U 1 - (I + C2  inf !Tu-t'

h,:. ~ ~ S] h,%.

Since M = R(E) is invariant for T, for u R(E) we obtain

inf Tu-t' < - T u 1-

(8.27) follows from these two estimates.

Now consider the proofs of Theorems 8.2 and 8.3. The right

hand side of (8.4) is bounded by
'5

m

C( I((T-Th) .)1 + (T-T (T-Th)IR(E ...

i j="

W- now show that this quantity can be bounded by C '(h) 1 " h 11'

1 H with u = 1 and for v R(E ) with v = ".. 11 1 '-.
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((T-Th)uVv*) = a((T-T)u,A' v
h h

= a((T-Th)uA' 
v -b)

C (T-T )U'' A' v- 2 I I
?  S

I h~' v1 2' 2,h'

We have here used the definition of the operator A, (8.8), and

(8.16). Recalling the A'-  maps R(E*) N(A T ) onto

N( -- T.)) = M (A), we get

((T-Th)U'V) 1 < C (T-Th)U" A'-  h"

From this it is immediate that , J.....

(T*-Th) v*1 sup I(u,(T*-Th)v ) I

uE H

(8.28) u 1=1

A-1 * • * ..
- C *.iT-Th A' rh V v R(E ) with v = , 'l

and

(T-Th) #, (T-Th) TE )I

(8.29) C E (T-T A' h

h)h IRhEhh

C Ih h h"

Now, using (8.27) - (8.29) we get

m m* 'V
""-

y 1(+T-Th )0 0)l (-T) IR(E )  (T -Th)"R E h C (h

i,j=l

Thus Theorem 8.2 follows from Theorem 7.2 and Ther2rem R. 3 frnm

Theorem 7. 3.

Remark 8.. The proof wp hai.- jit,,n fDr 8.?4 to;etlr 24w. -

(8.12), shows that



(8.30) IX-, -(h)h 0 C (h) c h,

where

m1 ''/

(8.31) X(h) = I X (h)..
j=%

We end this section by specializing the results to the Ritz

method for selfadjoint, positive definite problems and then pre-

senting a lower bound for the eigenvalue error. Suppose H = H2

H, 1.11 = II~iI is a real Hilbert space. Let a(-,-) be a
"H

symmetric bilinear form on H satisfying (8.1) and

2(8.32) a(u,u) > dl!uO! , Viu E H,

with o a positive constant. Note that (8.1) and (8.32) imply

that a(u,u)1/2 and J!u are equivalent norms; a(u,u) I / 2  is

often called the energy norm of u. Let b be a symmetric bilin-

ear form on W satisfying (8.7), with W= W2 = W D H compactly,

and satisfying

(8.33) b(uu) > 0, V nonzero u E H. *

, .,..

(8.32) implies (8.2) and (8.3) are satisfied. We note that (8.1)

and (8.32) show that a(*,*) is equivalent to the given inner tA

product (') = ('" H on H. We will now take a(-,-) to be

the inner product on H and take I.,t = ,/a(-,-) to be the norm.
a

We see that T = T* = T. Thus T is selfadjoint; it is also pos-

itive definite. It is, of course, compact. Let S = S S
1,h 2,h h

- H be a family of finite dimensional spaces satisfying (8.13).

In this case the variational approximation method (8.14) is called

the Ritz method. (8.11), with ?(h) = , and (8.12) follow from

(8.32).
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Under these hypotheses, the problem (8.10) has a countable

sequence of eigenvalues

and corresponding eigenvectors

ulI u2  u3  .

which can be assumed to satisfy

(8.34) a(uiu.) = \.b(uiu) = ij

(cf. Section 4).In the sequence (\ k}, the are repeated

according to geometric multiplicity. Furthermore, the . can be

characterized as various extrema of the Rayleigh quotient ..

=a (u,u)
- , 'V

) b (u, u)"

We state these characterizations now.

Minimum Principle

= min R(u) R(u1 ),
(8.35) u< H

k min R(u) = R(uk), k = 2,3,....
u_ H

a(u,ui)=0,i=1,....k-i

Minimum-Maximum Principle

(8.36) min max R(u) = max R(u), k = 1,2,..... .
k V k H uV k  11UkSp(u I ..... uk)

dim V k= k

Maximum-Minimum Principle

(8.37) A max min R(u)
Zl ... Zk_1 H u H

. ..... )=0,..........k-i
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min R(u), k =1,2,....

a(u,u.)0i1...

Likewise (8.14) (with S 1,h = 2 ,h = has a finite

sequence of eigenvalues

0 < < N =dim S.1,h 2,h...... N,h' . V

and corresponding eigenvectors

which can be taken to satisfy

(8.38) a(u hu~h k \hb(ui hujh X jh 6 i

For the X k~ we also have extremal characterizations.

Minimum Principle

A = min R(u) =~ ,)
(8.39) ,h tESh ~ l)

k,h min R(u) =R(u kh) k 2,..N

h
a(u,u )=i1..k-

i,h f

Minimum-Maximum Principle

(8.40) A kh = min max R(u) =max ROO
V S U-V k.- U sp(u1,...Uk
k,h- h k,h uU ~ '*' ~

dim V =kk,h
k =1,2,.....N.

Maximum-Minimum Principle

(8.41) A max min R~u)
k , h Z 1 h ' ' ' . k - h ' H Sk h
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min R(u) k = 1,N.
uE Sh  J-

a(u,u i,h )=O,i=i,.....k-i

It follows directly from the minimum and the minimum-maximum

principles that

(8.42) k k,h k =1,2,...,N dim Sh.

For a comprehensive treatment of such extremal characterizations

of eigenvalues and their applications we refer to Courant-Hilbert

(1953], Weinstein and Stenger [1972], and Weinberger [1974].

If Ak  has geometric multiplicity q, i.e., if k = k

= then I A % X, and combining (8.40)
k+q-l' k,h'''' k+q-l,h k

with Theorems 8.2 and 8.3 we see that

(8.43) A + 2
k - j,h - k + h J = kk .. k+q-1.

-1.:-.-
(Recall that the ascent a of A1 - T Is one.) Regarding the

k

approximation of eigenvectors, from Theorems 8.1 and 8.4 we see

that if wh = uh j = k,...,k+q-1, then there is a unit eigen-

vector u = uh of (8.10) corresponding to I such that
h k

(8.44) il'u-w h 1

and if u is a unit eigenvector of (8.10) corresponding to

then there is a unit vector wh in sp(u , . u ) such
hk,h''' k+q-l,h

that

(8.45) )!U-W C h

if Ak is simple, i.e., its geometric multiplicity is one, we

have
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(8.46) UkUk h 1k k, h ,1 h',

To be more precise, if u 1 ,u2 .... satisfy (8.34), then ,%.

Ul,h'u 2 ,h ... UNh can be chosen so that (8.38) and (8.46) hold.

Regarding these applications of Theorems 8.1 - 8.4, see the dis-

cussion of the selfadjoint case at the end of Section 7.

We have shown that 1 -A~h)j s Cr, where A(h) is any

eigenvalue that converges to k. We now show that if k is

simple, then the error has the lower bound

2 C a positive constant.

These results, together, imply that the eigenvalue error is of the
2 ...VP'c V

same order as h

Theorem 8.5. (Kolata [1978]). Suppose we are in the selfadjoint,

positive definite case discussed above and suppose is a simple

eigenvalue of (8.10), i.e., it has (geometric) multiplicity one,

A(h) is defined by the Ritz method, and A(h) k. Then there

is a positive constant C such that

(8.47) 'k(h)- I h

for small h. -'

Proof. Let o, be a unit eigenvector of (8.10). Combining (7.:)

and (7.7) yields

-1 (h) -= a (T-Th)O , ) + a( (T-T )o , 0
h h 1'

(8.48) ...
a( (T-Th).o ,co - Ia( (T-Th)' ., ,, . .. .

where L h  is -he project-,ion introduced following 7 .). Now
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,.. r . .
.# -. 4I

- % W,

using (8.8), (8.16), and the definition of h we have
%. do

(8.49) a((T-Th)0,, ) = Aa((T-T h )(,TO

= )a((T-T h),To-T h)

2= ;. (T -T h ) 0 a

= k -1 ! AT 0 2
h a

k inf

- ~-1 2

and, using (8.27) and (8.28), we have -"

Ia((T-Th)0,Lh --0)I (T-T h)O a Lho-0 a

(8.50) hT-Th (T-T

CT-Th2h h* A• t%.

Combining (8.48) - (8.50) we obtain

-1 -1 -1 2 2
A - ' (h) -h - C T-Th

-h

2 -1

S'/2, for h smallh , . ". ...

From this we obtain

2 . -k,(h )-k k (h ),, h .' 2..

2
2 for h small.

U,-,

Remark 8.2. If is a multiple eigenvalue, one can prove -"'4

1 1 - (h) C inf nf 2 2M a
Cf. Theorem 9.1.
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Section 9. Refined Estimates for. Selfadjoint Problems

In the previous section we presented error estimates for

variationally formulated problems and at the end of the section we

specialized these results to the Ritz method for selfadjoint, posi-

tive definite problems. Because of the importance of this case in

applications we now present an alternative analysis due to Babuska

and Osborn [1987]. This analysis, which is somewhat more direct

and self-contained than that in Section 8, yields stronger results

than those in Section 8 in the case of multiple eigeneigenvalues. .

As at the end of Section 8, we assume that a(-,-) is a sym-

metric bilinear form on H satisfying (8.1) and (8.32), that

b(",') is a symmetric bilinear form on W satisfying (8.7),

with W = W = W D H compactly, and (8.33). We take a(-,-)
12

and . = a(-•) to be the inner product and norm on H anda

set I;-I; '(~*) Then, as stated in Section 8, the eigenvalue

problem (8.10), i.e., the problem

ru H, U - 0( 9 .1 ), - -.
ta(u,v) = b(u,v), V v - H

has a countable sequence of eigenvalues

0 < 1 2  +...

and corresponding eigenvectors

U 1 U 2 ,.,.,u I  u 2  .....

which can be chosen to satisfy

(9.2) a(uiu ) = A b(u.,u.) = ...." .

n H cn be w e as i

Furthermore, any u H can be written as
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(9.3) U = with a a (u,u2),-

j=1

with convergence in ;-k (cf. (4.10) and (4.11)). We assume Sh

- H is a family of finite dimensional spaces satisfying (8.13)

with 3(h) = a. The eigenvalue problem (8.14) with Slh S 2 h =

Sh' i.e., the problem

u h  h , u h  0

(9.4) .r . w

a(u = hb(uh,V), V vc Sh

has a finite sequence of eigenvalues

0 < A 1 < k <  . Nh N = dim Sh , '%.
1,h 2,h N" h''di

and corresponding eigenvectors

Ulh'..... N h' .

which can be chosen to satisfy

(9.5) a(uh'Uj ,h ) = Ajhb(Uih'Uh) = ' i,h ij "

The k and A satisfy the extremal principles stated in
k k,h

Section 8.

Our analysis makes use of the following lemma that expresses

a fundamental property of eigenvalue and eigenvector approximation.

Lemma 9.1. Suppose (k,u) is an eigenpair of (9.1) with 11 b

= 1, suppose w is any vector in H with wb = , and let k

= a(w,w). Then

(9.6) - = w-u 2 - \ w- "
a a.

(Note that we have assumed ii and w are normalized with re Spert
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to b here, whereas in (9.2) arid (9.5) we assumed u. and

Ui,h are normalized with respect to a-)

Proof. By an easy calculation,

w u 2 - A:w - uI:2 2 2a(wu) + 'u;2'

a b a a

VO 2iwl + 2kb(w,u) - ,!u'12 -

... b'

Then, since

W ! b W b. ..

11w 2
a

1u2 = 
a

and

a(w,u) = b(wu),

we get the desired result.

For i = 1,2,... suppose A is an eigenvalue of (9.1)

with multiplicity qi, i.e., suppose

k.-1 k. k.+1 k +(1 1 k +qi k.+l2111 11 1 1

Here k= 1, k 2  is the lowest index of the 2nd distinct eigen-

value, k3  is the lowest index of the 3rd distinct eigenvalue,

etc. Let

(9.7) h(i j) = inf inf u-tj 1a. qi
u,:M(hk) 'Sh

a(u~ukh) = ... =auu k +_, ) =O.v

auua(u,uk. )= 0. N

where M(A k is defined in (8.18). The restrictions a(uiuk h•

19

= .. =a(uuk h) = 0 are considered vacuous if j =1.""
+j 2,h..
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Note that rh(h l) h(Ai) where ( is defined in (8.21).

We now estimate the eigenvalue and eigenvector errors for the

Galerkin (Ritz) method (9.4) in terms of the approximability

quantities e (ij).

Theorem 9.1. There are constants C and h0  such that

(9.8) C-< 2 , "
k.+j-1,h k.+j-1 - i,j , 0 < h h, j = 1 '

i 1 , 2,...""p..

and such that the eigenvectors uI u2 .... of (9.1) can be chosen

so that
'./ '.'

(9+_ I h !k+Jul u Cc (ilj), V O<h<h 0 , j 1,...,qi,
(9.9) u uk ,- a -u h

and so that (9.2) holds.

Remark 9.1. (9.8) should be compared with (8.43), (8.47), and

(8.51).

Proof. Overview of the Proof. The complete details of the prof',

which proceeds by induction, are given below. Here we provide an

overview. In Step A we give the proof for i = 1. The proof is

very simple in this case and rests entirely on the minimum prin-

ciple (8.39) and Lemma 9.1.

The central part of the proof is given in Step B. There we

prove the theorem for i = 2, proving first the eigenvalue est-'-

mate (9.8) and then the eigenvector estimate (9.9). In part ilar.

in Steps B.1 and B.2, estimates (9.8) and (9.9), respectively, are

proved for j = 1. We further note that the argument used in S3t-p

B proves the main inductive step in our proof, yielding the result -..,

for i =i + 1 on the assumption that it is true for i I. .,
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be somewhat more spetcific, the argument in Step B.1 proves (9.8)

directly for any i >- 2 (and j = 1) and that in B.2 proves (9.9)

for i = i + 1 (and j 1) under the assumption that U h

U i! a--O as h-----40 for k - Il (cf. (9.30).

Details of the Proof. Throughout the proof we use the fact that

eh(i , j ) can also be expressed as

h(ij) = inf inf u- 'a
h uEM(k k . ) taS h  a
(9.7') a(x uk h)=...=a(zuk .h)=O

i 1

a(u'uk .h)=.. =a(uu )=0 ".,.
1il k .+j-2 ,h

1

Step A. Here we prove the theorem for i = 1.

Step A.I. Suppose k (k= 1) is an eigenvalue of (9.1) with
1

= . =multiplicity q1 , i.e., suppose Ai = 2 q < q

In this step we estimate A - A the error between and
l,h 1'

the approximate eigenvalue among A that is e i e.
l,h. .' q ,h

to i.e., we prove (9.8) for i = j = 1. Note that

(1,1) inf inf u-
u. M( 1) A Sh

is the error in the approximation by elements ot S "I ! , -'

easily approximated eigenvector associated with

From the definitions of h (1,I) we see that t ere :z-.

M(A ) and an sh S such that
h h

(9.10) uh - h a ="

Let
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u h  .. Sh  -

'- 
hU-, Sh=

h
b(UhUh) /bShSh)

By the minimum principle (8.39) we have

(9.11) ,h - 1 a(s-h'sh

Now apply Lemma 9.1 with (W u) = ( ,Uh = sh' and "

a(shsh). We obtain
h, h

2 - 2
a(sh.sh) 1 Sh-h - 1 kSu

9 h 1 h h b=
*(9.12)

- C s-UShUh a h aa

9.!0 - 9.12) yield the desired result.

Step A.2. :n this step we prove [9.9) for i = j = 1. Let

...... e e en eLtors .f 9. 1 satisfying (9.2). Write

\ \..",,*..:

4-T

)-I ,. . . -'
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(9 .14) 
1=. 

.....

_ C(l - X /I l -1/2)

(1)
q 1 (. 1 )uj, 

-
z ~a uj = 1 i . . .

Redefining u1  to be we easily see that !UlaN

I a a )u-I

j=1 J a

1, so that (9.2) still holds, and from (9.14) we obtain

(9.15) u U S Cc (1 1),,1,h 1a h' l.).

as desired. Note that u may depend on h.

Step A.3. Suppose q1
- 2. From (9.7') we see that

(9.16) Fh(1 2) = inf inf Iu-T!

u[)Sh

a(u,u I h)=O a(T,u ,h )=O.'
p. €'.~.

Choose uh M(k I ) with a(uhUlh) = 0 and sh Sh with

a(su) = 0 so that .

(9.17) Uh-s = ( ,2)h- h~a

and let

u = , h(hUh) S b(shsh)

Since a(shuh) = 0, from the minimum principle (8.39), Lemma

9.1, and (9.17), we have

- 2 2(9.18) S u C (1,2).
h,2 2 - h h a ChlP) .

,,..

This is (9.8) for i = 1 and j = 2.
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Step A.4. In Step A.2 we redefined u Now redefine u ql..u

so that u 1 ....u q are a-orthogonal. Write

(2) U

j=1 3 4J

Now, proceeding as in Step A.2 and using (9.18), we have

OD. OD(I~~ ~ 22 ll a2)) 2  ( 2)) 2 o

1 -- [ Y a (- .
1 j=q1 +1 j=1

la(u 2  ' h , h h)- A2b(u2 h U )I 2 ,h
. . 1 •." .--.'.

2,h - 2 ), h

Cc 2 (1, 2 ).

Thus -

(9.19) [U2h - a2uj a Cch(1, 2 ).

J=1

But by (9.15),

(2)=a
a1  (u2 ,h'u

= a(u2,hul- 1u h)
%'_ .%"

(9.20) su u u
2,h a' 1 1,h a

Cch(1 i) 1.-'

< Cr-h(1 2).

Combining (9.19) and (9.20) we get 
Olt

ql ql ",1 1
12)U ; U2 - a(2) + (a 2)u I "

u2,h - aj uj a f U h 2 Z )uj a a 1 U1 a

J=2 j=,

- Crh(1, 2 ). .' .
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(2) .vX a.2)u. ;

Redefining u 2  to be , we see that !u = 1 and

q1  (2) 27- a uj a
j=2 %

a(u,u 2) = 0, so that (9.2) holds and

(9.21) tu 2 ,h u !2 I S Crh(1, 2 ),

which is (9.9) for i = 1, j 2.

Step A.5. Continuing in the above manner we obtain the proof of

(9.8) and (9.9) for i-= 1 and j = 1,...,q1

Step B. Here we prove Theorem 9.1. for i = 2.

Step B.I. Suppose Ak (k2 = q +l) is an eigenvalue of (9.1) of

multiplicity q2 " In this step we estimate I 2 ,h -k the
21 2

error between A and the approximate eigenvalue among

k h .... k2 +q2 - 1,h that is closest to k Note that

(9.22) h (2,1) = inf inf ,u- ! a'uE=M( k2 -ESh  a.. A.

k2 h

Introduce next the operators T,T h : H--H defined in (8.8)

and (8.16), respectively, i.e., the operators defined by

Tfc c H

{a(Tfv) = b(fv), V v E- H

and

Thf rS h  :h h

ta(Thfv) = b(f,v), V v c S

It follows from (8.1), (8.7), (8.32), and (8.33) that T and Th

are defined and compact on H. Furthermore
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(9.23) !!(T-Th)f!l a - C inf !ITf - rJ a -
":e Sh

We now suppose the space H and the bilinear forms a and

b have been complexified in the usual manner. Let F be a

circle in the complex plane centered at Pk2 = k-I enclosing no

other eigenvalues of T. Then for h sufficiently small, F

r c p(Th) and Int (r) n c(Th) = Uk2P h...... k2+q 2 Ih)F where

~k+i -Ietin6 (pk2 ) th
2 = k2 +i Also, as we have seen in Section 6, E ), the,

spectral projections associated with T and and Efk ,..,
2 2

the spectral projection associated with Th and p k+i,h,  =

O ... q2-1, respectively, can be written as ..

(9.24) E 2(pk = (z-T-ldz
k2 Jr(71

and

(9.25) EhPk (Z-Th)-ldz

r

Let u E R(ElPk2)). Then vh E h(P u e R(E(pk2) and
2 2 2

from the formulas (9.24) and (9.25) we obtain

1 u vhIi (E( ) - h(Pk ))U;"
2 2 a

1 I-l -1I :i
= I- (z-Th) (T-Th)(z-T) u dzil

h h%r
fu

(9.26) I 2n i (z-Th) (T-T dz~! ,.szi

r k 2
f2n rad(r)] sup (z-Th) N a ,(T-Th)u,:

,, z r h rad(r) h a-

98

,~ ~ ~a~ A.A P .. ~ -.. .AFA



= p+rad(r)) l,:IT-T )U,
k 2+q 2-1,h k 2

SC!! (T-T h) U1 a .

(9.23) and (9.26) yield

'u-v i; a< C inf Tu-r:a
ha aX ESh 2

(9 .27 ) = C inf :! - : a-. .

s C inf u-x!1' e S h  -a; " .

This is an eigenvector estimate; it shows that starting from any

u E: R(E(gp )) we can construct a vh = Vh(u) E R(Eh(Pk2)) that
2 2 h-hhk

is close to u. We now use (9.27) to prove the desired eigenvalue

estimate.

By the minimum principle (8.39) we have

(9.28) k - = inf a(v,v) -
k 2 ,h k 2  W-h 2

*.b
a(v,u. ,h )= 0 ,

22Since v h  =R(Eh( k2)) we know that a(v h u i, h )  = ,i 1

1,...,k 2-1. Thus, from (9.28) we find

, vh vh l'; ':

k2 h k a a - k ""
2 2 2hb ho-' 2

Combining this with Lemma 9.1 and (9.27) we obtain ..-

Svh u 2 vh u.. S

k h k V U'a k 'IV u b2' 2 h b b 2 h b b

< - u %
h a

99

• **, **v*.%*.-,'. . ..S *.*.. . .J .. . ........ . . ...... p.*... . . . . .. . . ,......, ,,-..,..,.... , . ,....,.



, . %;,

< C inf u-i 21.S h 'a %
for u R(E(/lk2)) with u a = I. Hence, using (9.22),

2a
2

(9.29) k C inf inf Iu-i:ukM2 k2h kSh a , -
k 21h k2 utEM (k )-S

2
= Crh( 2 ,1 ) ,

which is (9.8) for i = 2, j = 1.

Comment on Inequality (9.29). A careful examination of the proof

of (9.29) shows that C depends only on p - P and i -

1 2 2

but is independent of h, and that (9.29) is valid for h
3

< hO , where h is such that h h implies F - P)(Th), ..
0 0h

Int (r) d(Th) = (Uk U and UkUk+ql is

small, say uk2Uk2+q21,h r tad (r)/2. Note that if we were con- *-

sidering a family of problems depending on a parameter t, we

could bound C = C(r) above, independent of r, provided jk

C' v. %

- (r) and p were bounded away from 0, and we
k- kv k2 2 '3

could bound ho(r) away from 0 if F(t) p(Th(t)). Int (T(r))

t(Th(r)) = (uk2 h ' "' Uk2 +q2 -l,h), and (r)- k2 q2 -,h
( )

rad (F(r))/2, uniformly in r.

Step B.2. Suppose, as in Step B.1, that kk has multiplicity
2

q2 . We have shown in Step A.5 that we can choose the eigenvectors

U1,u 2 .... of (9.1) so that (9.2) holds and so that

(9.30) Uhj u C (1,j), j h1 = k 2 -- ".
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Write

(9.31) 
Uk h =  a 2)uj.

j=1

From (9.31) we have

IZ 2 ,')h:sI - Ak2/Ajfl = 2a( 2 h'Uk h) - k k hk

2 2' 2' 2 2' 2'

-1
h Ph k 2 k h'

which, together with (9.29), yields

k -i

2  2

Ce h (2,1).

Note that the first term inside the absolute value is negative and

the second is positive. In addition

C 11 - Ak 2 /Aj C 2P = k 2 ' k2+1 k 2+q2-2 - 2 j ' 2 1, ..

with C1 ,C2  positive numbers. Hence from (9.32) we obtain
,

(93) k 2 - 1 ( )22ak 
] l

29[a DIe (2,1) + Da(k2)

', j=1 J=k2+q2..,

k 2  2 '
and

k-1

Lk )] 2 (k )]2.(9.34) a 2 D h (2,1) + D a 2
j=k 2 +q 2  j=12 2

Write
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(9.35) uh - u, = u. .u., i = 1,...,k -1 = q1"

j=1

Then, by (9.30), .', ..

2bj !i 2 2
u(9.36) b - u a c h(l1,i), i 1, ...

j=l

Next we wish to find constants al, .... k1 so that

k2 -1 'p

h (k2)
(9.37) a(u i , a u h )  a 1... k k 1.

Using (9.35), these equations can be written as ..

k -1 k -1
2 2

alui,Z (aju. + aj bj ",u,) 0. + b..

j=l 4=1 j=1

(9.38) (%2 ) ''p

-. a. . ~ .....k-1:2

22

Since (8.13) implies rh(2,1)--O as h-O, from (9.36) we see

that the b. are small for h < h0  with h sufficiently
J,1 0

small, and hence the system (9.38) is uniquely solvable, and,

moreover, there is a constant L, depending only on k2 , such

that

k I -1
1/2 2 (k i "./

(9.39) a ]L

j=1 .j=1

Now, from (9.30) we obtain

(k 2 ) =

!a 2 1 *a(uk hu.)!

2'.::
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=Ia(uku h u ),' -

< H'U h1!U - u
k 2p h' B 0 j, a

= I[u. - U.~l a :'

-< Cc,(h), j = 1..., k2 -1.
.3-

Letting
" k 2- I .,,u

2
(9.40) 2 2h(9 0)p2(h) = eh(l,j),

j=1

we see that

k2-1 1/2

(9.41) a ( < /(h)2 .

and thus, from (9.39)

2 1/2 2d

(9.42) < LCp (h)

<Cp~ k h)
2

Now let

k - I
(9.44) a(ui,,p) = 2k -

a k ) i b j'i, i k2.,-,,

j=1

FFrom (9.42) and (9.43),"eg

,'.-?
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a a k2 h a
2'p

l• U

Uk2 ha

(9.45) k _1
2 1/2

y .2

J=1

< CPk (h).
2

Using (9.29), (9.44), and (9.45), and the fact that pk (h)- 0

as h-O, we get

2 k 2 h - k2""."'",

2k h k

kh

(9.46) >a(u h' kI bh' i-.-
k2' h 1lH!a k2 k2' a

k 2 -1

=C' a 2 [a 2) a ibi ,2(i l

2b 2C =k2+q2)E.k)Zii -J

where C' > 0 and is independent of h. Combining (9.36), (9.39),

(9.40), and (9.46) we obtain -

2 2
[ a . <- C .,r h ( 2 , 1 ) 

.

f=k 2
2+q

2

+ I aI

f=k 2 +q2  i=1

k2 2 -
k-
2

C (2,1) + la, 0 lb 1]
i =1 f=k 2 +q 2 - ,
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L k 2 -1 ~1/2
C+ I([ a, 2 ) 2 J

i=l k2 +q 2

(9.47) 

21 1/2.
Y+ iJ j=k +q 2

k-i 1/2

+ e (2,L) + l21
i= 1 =k 2 +q2  - -

max h
i=i .... k -1

2

k -1
21/

C 2h(2,1) + Ch( 1 ,k 2 1) /-7T[Z Iil2j

--.(k 2 ) 2

22  2] .. V

laf I 1

2 2

kk -1

2 i2 2

I ~. o - '

/k (k)]

: (2 ,1 ) + h (1 ,k 2- 1 ) Li .-

(k2) 2

=a 2 q 2-

k -1

2105 1/
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(9.47) is a quadratic inequality in a ( 211] whose
=k 2+q 2

solution yields

(9.48) a=2+ 2 2  2(

Combining (9.33) and (9.48) we get

k 2 - 1 k - 1
(k )]2 22 (k)]22
[.2 2~ a 2 2 ~a D l (2.1) + D2 C:h(1,k 2 -1) a. + D C i (2.11),

=1=1

and thus, since ;h(1,k2-1) is small for h small,

k 2 - 1
2

lr r(kh '2
(9.49) L a Li Dc5, (2,1).

Next, combining (9.34) and (9.49), we get

(9.50) a 2  + D6 t: (2,1).
"-. =k2+q2

Finally, from (9.31), (9.49), and (9.50) we have

k 2 +q 2 -1 k2 - 1 2 2Z (k2 a 2 [+"u a . u a + ajUk 2',h j a

j=k2 j=l1 j=k2 +q 2

C, h( 2 ,I).

k +q -12 2 (k )
2

Z a. u

--V j=k2 i i

L Redefining u to be we see that I
k2 k 2 +q 2 -1 (k

2

.jk2  1 a
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an..

so that (9.2) holds, and

(9.51) lUk2 , h - Uk 2 'a 1-  Cch (2 ,I).

This is (9.9) for i = 2, j = 1.

Comment on Estimate (9.51). In the proof of (9.51) we used (9.30),

which was proved in Step A. A careful examination of the proof of 7.
(9.51) shows that we that we did not use the full strength of

(9.30), but only the weaker fact that Iu . --u.II -- 0 as h----0

" for j ! k2-1. (Cf. the Overview of the Proof.)

Step B.3. Suppose q2 - 2. In Step B.1 we estimated k -20h

Xk In this step we estimate Xk2+1h _ X"k2+1
2 k2 +1 - k2+

We proceed by modifying problems (9.1) and (9.4) by restrict- J."'.

ing them to the spaces

k_ ,h ,.-V

H = {U H a(uuk h ) =)

2'0

and

k ,h

S h (U E: S h a ' h 0)

k h
respectively, i.e., we consider the problems (9.1 ) and

k ,h k ,h(9.4 2 obtained by replacing H and S by H and

k h k h
Sh in (9.1) and (9.4), respectively. (9.4 ) has the same
eigenpairs (Ajh, u h) as dos(.4), except that the pairhk ,helimins(1~, j) ated. (9.) exettattepi

k2h
p ,U has been eliminated. (9.1 ) has eigenpairs Pa
k ,h k ,h
21 2*k 2'h k h
2 (~ , u 2 which in general depend on h. Nevertheless,

k2 h
(9.52) 0,. q 2

2 2
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the eigenvalue under consideration, is an eigenvalue
2 2'

of multiplicity q2 -1 for problem (9.12 h Its eigenspace isk 2 h 2

(k) = (u C M(k) a(uuhk =
2 2 2 0*

We can now apply the argument used in Step B.1 to problemsk ,h k2 ,h

(9.1 2 and (9 .4 2  and, using (9.7'), we obtain (cf. (9.29))

(9.53) -- 2,2(h), for h < h

k2 2h

Since Uk h depends on h, the problems (9.1 ) and

k2 1 h
(9.4 depend on h. It follows from the Comment on Inequality

(9.29) with r = h that we can apply the argument in Step B.1 ob- .

taning C and h that are independent of h. To see this, note
0

that pk2) = ik by (9.52), pk 3(T) P k by the minimum
2 2 3 3

principle, and pk p since p 1-/ M 1 -k by

the minimum-maximum principle, and uk h-----U k (cf. (9.51)), and

hence that pk (r) - l1k(T) and k2( M - /k (r) are bounded away
1 2 2 3

from 0. Then note that F(r) F :(Th = P(Th)-(uk h),
2'

Int (F(r)) o'(Th(r)) = Int (r) ((T(Th)- Uk2 h1 )  =

{Uk2+l ,h.... Uk2+q 1,h  and uk ( )-Uk2 lh(r) =

U 2 k2 +q2- ,h -- rad (=r))/2 = ad (F)/2.

Step B.4. Suppose q2  2 as in Step B.3. Here we show that

Uk+l can be chosen so that u h U C (2,2). We
k2 +1k2 +1h k2 +

know that
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(9.54) h . (1,j), j =

iCc (2,1), j=q 1 +1 =k2

(cf. (9.15), (9.21), and (9.51)). Assume that +1u

have been redefined so that (9.2) holds. Write

S(k 2+1)

uk +1,h L.. a j u1'~~ 2
j=1 '

If we apply the argument used in Step B.2 to uk 1h i.e., if
2

we let k 2be replaced by k 2 +1 and use (9.53) instead of (9.29)..

we obtain

k +q -1I

2 22

2 2

u~~~~ k~( ,2)ai ujaSC h(,)

2k 2

2 ja

(k 2 2+ 1laI =jV

k k +1,109
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k2 +q2+1 a(k 2 )

Z a. u.
* jk 2 +1 ( 3

Redefining Uk2 +1 to be k+1 , we see that

II Z aj uIIJ=k2 +1 a

kIUK2 +ilia 1, a(uk2 ,U ) = 0, j = 1,..., k so that (9.2)

holds, and

U- C (h),
k +1,h "+la 2,2

which is (9.9) for i = j = 2.

Step B.5. Continuing in this manner we prove (9.8) and (9.9)

for i= 2 and j = 1,...,q 2 "

Step C. Repeating the argument in B we get (9.8) and (9.9)

for 1= 3,4,..... This completes the proof. 0

Remark 9.2. Babuska and Aziz [1973], Fix [1973], and Kolata

[1978] proved the estimate

- (9.55) Xk.-h +kij-1 < Cc(X, j = 1,..qi

where Ch (A) is defined in (8.21). (9.55) is weaker than (9.8).

For j = 1,...,q i-1, (9.8) shows higher rates of convergence for

certain problems; see the discussion of multiple eigenvalues in

Subsection 10B. Birkhoff, De Boor, Swartz, and Wendroff [1966)

estimated I - in terms of the sum of the squares
ki+J-i ,h ki+J-1

of the a-norm distances between S and the unit eigenvectors
h

associated with all the eigenvalues k not exceeding I.

I 'C..
,-
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CHAPTER III. APPLICATIONS

In this chapter we apply the abstract results developed in

Chapter II to several representative problems.
.'

Section 10. The Ritz Method for Second Order Problems

A. Vibrations of a Free L-shaped Panel

We consider the problems of the plane strain vibration of an

L-shaped panel Q with free boundary. The specific shape of the

panel is shown in Figure 10.1.

A2  l

A5  5

A0= (0,0) x
S2 "

A3  A4

Figure 10.1 The L-Shaped Panel 0

The equations governing the vibration of an elastic solid

were discussed in Section 1 (see (1.33) - (1.35)). Corresponding

to the L-shaped panel we have the eigenvalue problem I

*5 555* S5--* %5 5 5



(10.1) f_(A
-(A + P)- - 'iAV = v, (x,y) E

where e = + dv" We obtain (10.1) from (1.35) by assuming that

u(x,y,z) and v(x,y,z) are independent of z and that w(x,y,z)

= 0. The boundary conditions describing the traction free bounda- A
ry are

(10.2) X = Yn = o, (x,y) c r = ao,

where ,Vp. ?,

Xu n + duv nn nx  a + - x -x y
(10.3) OV

Y = Xen + p- + n( - n x  )
ny C CY

(10.2), with Xn and Yn given in (10.3) are the Neumann condi-

tions discussed in connection with the elastic solid specialized

to the L-shaped panel. V

We now consider the specific case in which

_ = ,.. (31+2p)
= 2(.+p) =3 E - .+j = 1 E.,

2 L2
(i.e., in which X = 15/26 and p = 5/13). v is called

Poisson's ratio and E is called Young's modulus of elasticity.

G = p is called the modulus of rigidity. Note that 0 s , < 1/2

for any material. -V

We now discuss the basic steps in the finite element approxi-

mation of the elgenvalues and eigenfunctions of the problem (10.1),

(10.2), or, more generally, of any eigenvalue problem. These

steps are as follows:

1) Derivation of a variational formulation (8.10) for
,.

(10.1), (10.2) and verification of conditions (8.1) -

112

p ._. . t ,,_
,
. .. ., , ,,-; - j € ,. .. . j ..-.- .- .... ". - -- ... . .- ' '



' I.W ,.lN . V NI% %r.1 J Z .1 %-IW ~' q V- W 'Wb W- W- W WVVW .w VW ~- VW ' - Wv -~ ~ - . ' . ,

(8.3), and (8.6) ((8.1),(8.7),(8.32), and (8.33) in the

selfadjoint, positive definite case).

2) Discretization of (8.10) and assessment of the accuracy %

of the approximate eigenvalues and eigenfunctions. The

discretization proceeds by the selection of the trial

space S and test space S2, verification of
1,h 2,h'

(8.11) - (8.13), consideration of the finite dimensional

eigenvalue problem (8.14), and explicit construction of

the matrix eigenvalue problem (8.15). The accuracy of

the approximation is assessed by means of the application

of the results of Section 8.

3) Solution of the matrix eigenvalue problem (8.15).

The accuracy of the approximation method (8.14) depends in a
crucial way on the trial and test spaces S1, h and $2,h ' and
crucial the trh' an

their rational selection is strongly influenced by the available

information on the elgenfunctions, typically information regarding

their regularity. Thus, also of importance is

1') Analysis of the regularity of the eigenfunctions.

Remark 10.1. The approximation methods we will discuss in this

section are referred to as Ritz methods, by which we mean that the

eigenvalue problems under consideration are selfadjoint and posi-

. tive definite and that the test and trial space are equal (SIh =

S 2 h = Sh); see the discussion in Section 8.

1) Variational Formulation

We begin by casting our problem in the variational form

u E H .'
4 e ( 0 .4 ),"

(0 )a(u,v) = (db(w,v), V v ' H,

113-Uh~ '



WA

where H is an appropriately chosen Hilbert space and a and b %

are appropriately selected bilinear forms. This process was ex-

plained in Section 3. We typically proceed as follows. Multiply-

ing the first equation in (10.1) by 0, the second by p, adding :

the resulting equations together, and integrating over Q, we

obtain

aea

[. + -- iAu] + [-(k + p)g- - pAv]V}dxdy

WI p(u, + vV)dxdy.

Now, integration by parts shows that

([-(k + p)T- ptAu]o + [-(k + ) 0
- pAv].)dxdy

I. auo -a"

+ I/ V u V dxdy - ds-

0 Fn

( + /)O-x y- (A + )Oepn ds
+ /ii ~dxdy au0A2

(10.6) + pVvVdxdy - +)-ids d0 r

ra u a v ra # a r o a u aiv a v d h,''(1!0.) + + ix' - 2- - 2- ] pdxdy...

I p.
- (xn + Ynv)ds. +

Combining (10.5) and (10.6) we see that if ()u,v)) satisfies
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(10.1) and (10.2), then

J(A+ 2pi)fra + avl rq + . P

(10.7) + PIau + a 0iq + -u ! 2c-vd 'y.)xd

WJ p(uO + vip)dxdy

* for all smooth (O,ip), and, conversely, if (10.7) holds for all

smooth (,) then (10.1) and (10.2) hold, provided u and v

2
are smooth (u,v e H (0)).

From (10.7) we see how to choose H, a, and b in (10.4).

Let

FH H H(Q)xH 1 (0

(10.8)22
i(u, v) 1H 2 Hjull1 2 + 11v11i

and on H define the bilinear form

a(u,v; *,ip) (A 2p)I- + a 1 +a 1
L 7X TyJL rRX J-

(10.9)

daU av C7 ?P 2u al 2 dvd -

+ 1'+ - 2- 2 ] -J)dxdy.

It is immediate that (8.1) is satisfied and that a is symmetric.

Let us remark that a(u,v;u,v) has the physical meaning of the

(double) strain energy and that /a(u,v;u,v) is referred to as

the energy norm of (u,v). Recall from Section 8 that b is to be

defined on a space W D H. Let

(10.10) 2

I'(u, v) 1 12 + ih 2i!
0,() 0,0
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and define '.

(10.11) b(u,v; 0,w) = p(uO + vv)dxdy.J
,')

It is immediate that b is symmetric and satisfies (8.7) and

(8.33) and that H c W, compactly. It remains to consider (8.32).

Note that since a and b are symmetric, H (0) and L2 (0) may

be taken to be real. ..

We begin by expressing a(u,v; 0,p) in terms of the Poisson

ratio v and the modulus of rigidity G:

2G raua' ao v OVa(uv; O ') 1-2 j (( l-v) Tu a _ AY

..

(10.12) + i .. u C +

++ l-- + t )dxdy.

From (10.12) we have

a(u,v; u,v) l-2 f ( - )[ U 2 + VJ 2

(1.3)a~u av +1-2L)rau + 9v1 2
(10.13)+ + 2v }dxdyFu y 2 ax x

-G (1-2v) [[U + CV 2

1-2P' rau v? - V- 2 dxy+ + } dxdy.
2 ~dy xj

Recalling that v < 1/2, we see from (10.13) that

a(u,v; u,v) >- 0, V u,v

(as was to be expected from the physical interpretation), and that

a(u,v; u,v) = 0 if and only if
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ru u =C + c y

(10.14) 
icl c2 c3  1 2

Vcl ic 2 Pc3  c3 2x

for some clC 2, 3 . These displacements, which are characterized

as having no strain energy, are the "rigid body motions," i.e.,

translations and rotations. Thus (8.32) does not hold with H

defined by (10.8), but the above considerations suggest that it

might hold if H is replaced by a smaller space that did not
%%

include the rigid body motions. In fact, if we define

(10.15) H = ((u,v) E H j P(uu c2 'c + vvccc3 dxdy = 0,

V ci,c 2 ,c 3 ,-

then it can be shown (see Necas and Hlavacek (1970] and Knops and

Payne [1971]) that
.2 2 2!v;

(10.16) a(u,v; u,v) I!(UV)i2= 2lUli + I2 ) i

U V (U, V) -EH

where a is a positive constant. This is (8.32).

We thus restrict a(uv; i,,p) to H and b(u,v; otp) to

(10.17) W = ((u,v) E W : p(uu, + ) dxdy= 0

0
C. Vc Cc2,C3)

For the elgenvalue problem (10.1), (10.2) we therefore have the

variational formulation IM

ro , (u,v) H

(10.18)
La(u,v; ,,p) ,.b(u,v; ,,p), V (O,,p) E H.
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Thus, with a, b, H, H, w, and G) chosen as in (10.8) - (10.11),

m (10.15) - (10.17), we see that a and b are symmetric and con-

ditions (8.1), (8.7), (8.32), and (8.33) are satisfied. (10.18)

is a selfadjoint, positive definite problem of the type studied at

the end of Section 8.

As stated in Section 8, (10.18) has a countable sequence of

eigenvalues

0 < (1 2

and corresponding eigenfunctions -4

(ulv 1 ), (u2 ,v 2 ), ... I

'5

which can be chosen to satisfy

alU ,,  U J,V ) = b(ui,v i; U J,v = 1 ij"

When implementing our approximation method it is simpler to

consider the eigenvalue problem on the space H instead of on H,

i.e., to consider (10.18) with H replaced by H. Then w0 = 0

will be a triple eigenvalue with eigenfunctions (u,v) given by

(1,0), (0,1), and (-y,x). These eigenpairs and their approxima-

tions are then ignored. If the rigid body motions are included

in the space S1 ,h and S2,h , then =0 = 0 is also a triple

approximate eigenvalue with the rigid body motions again the cor-

responding approximate eigenfunctions. If this is not the case,

. then dealing with H and H does not lead to the same approxi-

mate eigenvalues and eigenfunctions. It is easy to analyze the

case in which the rigid body motions are not in S and S
1,h 2,h'

but we will not do so. Alternately, the validity of (10.16) or

(8.32) can be ensured by considering
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a(uv; oip) = a(u,v; O,v) + b(u,v;

instead of a(u,v; O,v). Then the triple eigenvalue I would be

the lowest eigenvalue. Usually the first alternative is used.

1') Regularity of the Eigenfunctions.

We have seen in Section 8 that the accuracy of the approximate

eigenvalues and eigenfunctions depends on the degree to which the

exact eigenfunctions and adjoint eigenfunctions can be approxmated

by elements in the spaces Sh and S2 h , respectively (see

(8.23) - (8.26)). In the selfadjoint, positive definite case this .

reduces to the degree to which the eigenfunctions can be approxi-

mated by Sh (see (8.44) - (8.46)). Since the approximability of

the eigenfunctions depends on their regularity, it is essential to

determine the basic regularity properties of the eigenfunctions.

The eigenfunctions (ui,v ) of (10.18) have the following

properties.

ui and v. are analytic in 0- UAj, where A. are

-' the vertices of Q. This follows from the general theory

of elliptic equations (see Morrey (1966, Section 6.6]).

The functions u. and vi are singular at the vertices

of A , and the character of the singularity is known.

The strength of the singularity at A depends on the
°-.

interior angle at A.. For the domain we are consider-

ing, the strongest singularity is at the vertex A0 . The

leading terms of u. and v. at a vertex have the form

= C r F 1 (0)

(10.19) , ,(
v C2 r F 2 (0) ,
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where (r,O) are the polar coordinates with origin at the

vertex, a depends on the interior angle and on k and
e.r

, and F1 (0) and F2 (0) are analytic functions of 0.

The value of Y is characterized as the root of a nonlin-

ear equation and, in general, can be real or complex. For

our example of the L-shaped domain, a = a0 = .544481...

for the vertex A0 . For a more complete discussion of the

singularities of solutions of elliptic equations in poly-

gonal domains we refer to Kondratev [1968], Merigot

[1974], and Grisvard [1985]. Using their results, any
op,1 1 2 2eigenfunction can be written as (uv) = (u ,v )+(u2,v2),

where u2 ,v2  Hk (), where k is an integer which is

greater than or equal to 3, and (u 1 v) is a linear

combination of functions of the type on the right side of

(10.19) with a -> 0  and with coordinates centered in

the vertices of C. Application of the method used in

the proof of Theorem 2.1 shows that, for our domain, u
*•

and v and thus u i and v. are contained in

0
H (C), with 0 

= .544481-... This statement of the

regularity or smoothness of the eigenfunctions is the

strongest that can be made in terms of Sobolev spaces

(without weights).

2It is also possible to show that u,v 'E R 1?(0), for any .-

13 > (Y0 = a0 + ); see Theorem 4.4. Of course, the
+12 0

space R (0) is much smaller than H (0) and hence

we can make a more effective choice for Sh if we use
CT+1

.28 (0) instead of H (0).

120



2) Discretization of (8.11) and Assessment of the Accuracy of the

Approximate Eigenvalues and Eigenfunctions

The discretization of (8.11) is accomplished by selecting the

trial and test spaces S and S satisfying (8.11) - (8.13),
1,h 2,h

considering the finite dimensional eigenvalue problem (8.14), and

deriving the matrix eigenvalue problem (8.15) from which the

approximate eigenvalues are obtained. The selection of S and
1,h

S is the most important part of this process. It is influ--2,h

enced by three considerations.

a. The spaces S and S have to satisfy (8.11) and
1,h 2,h

(8.12). Note, however, that if the problem under consi-

deration is selfadjoint and positive definite, from (8.32)

we see that (8.11) and (8.12) hold for S1,h = $2,h = Sho

for any Sh. Our problem (10.18) is self-ajoint and posi-

tive definite and we will take S = = S
1,h 2,h h'

b. S should accurately approximate the eigenfunctions of .'
I ,h

(10.18) and S2, h should accurately approximate the

adjoint eigenfunctions. Usually we also require that the

rigid body motion functions are included in S and
i,h

S 2, h  If this is not the case, then we have to assume

that the rigid body motion functions are very well approx-

imated. If they are not well approximated, although there

will be no change in the asymptotic rate of convergence,

the accuracy will deteriorate, especially with long

domains (such as long beams), for which the rigid body

motions for some parts of the domain could be relatively

large.
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C. The matrices A and B in (8.15) should be reasonably

sparse, since sparcity is strongly related to computation-

al complexity. Sparcity is achieved by choosing finite .

element spaces for S and S These spaces then S.
1,h 2,h'

have bases consisting of functions with local supports,

and, as a consequence, A and B will be sparse. We

note that the sparseness of A and B is not required

for the validity of the results of Section 8 and, in

fact, in certain applications one does use non finite -

element type trial and test spaces, spaces consisting of

global polynomials or trigonometric polynomials, e.g.

We now describe some typical choices for Sh for the L-shaped

panel.

The h-Version on a Uniform Mesh -

Let 0 be covered by a mesh of uniform squares I of size
ij

h as shown in Figure 10.2.

% % F;

'P.'%.
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It can be shown (see Ciarlet [1978]) that if k - 1 is an integer,

then
(10.22) inf Ju -xl 1  5 C(p)h Hull for any u e H (0)

(1.2) tI~ -x1 10  ' kOQ
XsP and any h > 0,

where

(10.23) p min(k,p+l)

and C(p) depends on p,k, and Q, but is independent of u

and h. (10.22) is optimal in the sense that hP on the right

hand side cannot be replaced by a higher power of h when the

mesh is uniform. If k is not an integer, then we have

(10.24) inf flu - 5I1 , - C(p)hP II-UR k( )

xr~gpH MQ
h

with p given by (10.23). Note that we have not said anything

about the dependence of C(p) on p. The proof in Ciarlet [1978]

sugggests that 0(p) grows with p, and thus could lead to the

conclusion that it Is improper to use p > k-1. However, this

conclusion is not justified because, in fact, C(p) - Cp(kl)

see Babuska and Sur [1987b].

We will now derive (10.24) - (10.23) from (10.22) - (10.23)

using the method outlined in Section 2 (cf. (2.12) - (2.16) and

Theorem 2.1).

Suppose m < k < m+1. Since

= U11 sup (t K(u,t))'-
H (0) 0<t< ,

where 0 = k-m, we see that

K(u,t) < t Pll
H (0)
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Let R > 0. Then for any t > 0 there exist v t E Hm(o) and wt -

H m+1 () such that u = v + w and
t t V

Hvtim, + tilwtim+1, K(u,t) + C t< +Ul! +
H (0) N4

Therefore, using (10.22) - (10.23) we can choose T1,t'l2,t g h --

so that

ph-1 v1-1 tO .h
Iv t  - xlt 1 10 < C(p)h vtImO s C(p)h (t k!! k( +

H (0)

where p1 = min(m,p+l), and

P421 p2  e-
-! II C(p)h ;w C(p)h (t !u!! E)

i t  X2,t I1, 10wtJm+l, - CQl (t -~u!klo¢-

H (0)

where p 2 = min(m+l,p+l). Letting xt =X + ;r we thus

have

h1 h0 2 -1 I '

(10.25) lu - t - C(p)(h e + h 2 - lu+ +
t,,1,o H (0) K

for any t >.

If p > m, select t = h in (10.25) to obtain .

9+p 1 '-

inf !u - < C(p)h (1llu1k +

x~gp H k(0)
h

C(p)hk -1 (u))kl + )
H (0)

(P) ha"- ( Iull k {i (o )  +-= C(~h~'(I~uI~k + c),

where I = min(k,p+l). If p < m, let t = 1 in (10.25) to get

PI 1 -'1
inf !u C(p)h H(u!!

gp ~H (0)%4

C(p)h('!u+ ).
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= C(p)h - I (Ifull ) + C)-

with p= min(k,p+l). Letting e =juIUI in these estimates
H (0)

yields (10.24) - (10.23).

Now define

(10.26) Slh =2,h =Sh h h'

We remark that the rigid body motions belong to Sh (cf. (10.14)).

Since (10.18) is selfajoint and positive definite and satisfies

(8.32), we see that (8.11), with 0(h) = a, and (8.12) hold.

(10.22) and (10.24) show that Sh accurately approximates the exact

eigenfunctions. Thus (10.22) and (10.24), together with a density

argument, show that (8.13) is satisfied. If an appropriate basis -r e

is chosen for Sh o the matrices A and B in (9.15) can be cal-

culated and they will be sparse. Thus the issues raised above in

a., b., and c. have been addressed.
-. V .

Now consider the problem (8.14) with this choice for Sh

and S and denote its eigenvalues and eigenfunctions by

2,h

1,h ... Nh ..

and

(Uw ,h'V 1 ,h
) .' (UNh,VN,h ) ,

where N dm Sh. To assess the accuracy of these approximate

eigenpairs, the results of Section 8 will be applied. All of the

hypotheses for these results have now been shown to be satisfied "

for our problem and approximation procedure. A'I

Theorem 10.1. Let S and S be selected as in (10.26).l,h 2,h

Suppose wk is an eigenvalue of (10.18) with multiplicity q,
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i.e., suppose (o- < k < Thenk-i k k+1 .. k+q-1 k+q*

1.088962 .. '*l
10.27) jh - C(p)h09 j = k,...,k+q-1. . ,-

_. ..
% %

If (whZh) ,h v j = k,...,k+q-l, then there is a unit

eigenfunction (u,v) (uhvh) of (10.18) such that

(10.28a) ,jU - WhIl + lv - Zhl 1  . C(p)h "544481.

and if (u,v) is a unit eigenfunction of (10.18) corrvesponding to

W then there is a unit vector (Whzh)

sp{(Uk,hVk,hI . (Uk+ql,h'vk+ql,h I  such that '--

(10.28b) Ilu - wh~lQ + liv - ZhllQ ! C(p)h 5 4 4 4 8 1 ..

If k Is simple, the eigenfunction estimates reduce to

.544481..
(10.28c) IUkh - Uk1!1 ,0 + JIVkh - VklQ C(p)h

Proof. We saw in Subsection 1') that u. and v are in H -

with = .544481 -- . Thus from (10.22) - (10.24) we have

£ hupinf Itluj vii - ( lx 2 )II 1) 1~ I  .-
h Jk..... k+q- x=(xlx 2 )ESh H(~H()

0

< C(P)h

(10.27) and (10.28) follow from this estimate and (8.44) - (8.46).

To show the effectiveness of estimates (10.27) - (10.28) we

would have to know the exact eigenfunctions and eigenvalues.

Because these are not available we consider instead the quantity

(10.29) Q(p,h) = inf a(u - lv - o r-2' v -t2 ) ,

1' 2 h
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where u and v are given in (10.19). Q(p,h) can be computed

numerically. Figure 10.3 shows the graph of

= , , , , ~1/2 =-",.,
IeIR Q(P'h)/a(u*,v*,u*,v*)]

as a function of h, for various values of p. lelE,R is the

relative error in the energy norm measure of the degree to which

(u ,v ) can be approximated by functions in S. The graph, _.

which is plotted in log-log scale, is a straight line and thus

1ER = Cha,
#E.A

where a is the slope of the line. We see that the slope is very

close to the theoretically predicted a = .544481-... Increasing

p decreases the constant C but does not affect the slope a.

From an analysis of Figure 10.3 we can draw several conclu-

sions:

To achieve an accuracy of 5% (respectively, 3%) with

elements of degree p = 1 we would require N to be about 25,000

(respectively, N to be about 170,000) and with elements of

iegree 2 we would require N to be about 19,000 (respectively,

N to be about 124,000). This shows that a uniform or quasiun--

form mesh is completely unacceptable for our problem.

Because the rate of convergence for eigenvalues is twice

that for eigonfunctions, we see that the elgenvalues atre much -

cheaper to compute than the eigenfunctions. Roughly speaking, we

see that for eigenvalue calculations the required number of un-

knowns would be about N - 160 (respectively, about N = 400) for

p = 1 and about N = 140 (respectively, N 350) for p = 2.
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While (10.22) qualitatively characterizes the error beha-'-.5

vior, it does not give all the desired quantitative information

because C and !!u!, are not known. More precise quantata-

tive information can be gained only by a posteriori analysis. We

will not, however, be able to pursue this direction. For a survey

of results on a posteriori assessment of the quality of finite

element computations, we refer to Noor and Babuska [1987]. A pos-

teriori error analysis is used also in connection with adaptive

approaches, in which the goal is to let the computer construct the IV

mesh required to achieve the desired accuracy.
V.

,*.' 5.,';

o '. ,

p.,

.€

S..'.

% %

-5P'..-'.'
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Figure 10.3. The Relative Approximation Error Measured in

the Energy Norm. The h-V3r-;ion.
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The p-Vers ion

In the h-version of the finite element method 
accuracy is

achieved by letting h%0, while p is held fixed. In the p-

version of the finite element method, one, in contrast, fixes h

and lcts p/ .

Let Sh again be defined by (10.20) - (10.21). Regarding ,..-
h

the (p-version) approximation properties of the family

(hp=1,2 , it can be shown that if u = u1 + u 2 , where u1h .=1 2 ... ' 1- ..'1
k OrH (0), with k e 2, and u= Kr F(O), with a > 0, then

(10.30) inf :u - !il, < C(h)[Kp + p(k ) dulikQ].

XES~ ,

We remark that in (10.30) it is essential that the origin of 0

lies on an element vertex; for in this case, the estimate for u2

is of twice the order as would be obtained if we based our esti-

mate on the assumption that u2 E H and used the h-version
2.

with a uniform mesh. For a proof of (10.30), see Babuska and Suri

[1987a].

Define

(10.31) Sl,p S,p Sp h hP.

Then (8.11), with /(h) = a, and (8.12) are satisfied. (10.30)

shows that S accurately approximates the exact eigenfunctions
p

and thus that (8.13) is satisfied. We see that the issues raised

in a., b., and c. have been addressed. In connection with c.,

however, we observe that the matrices A and B are less sparse

than with the h-version. Note that the parameter p, which

approaches O, is here playing the role of the parameter h in
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Section 8, which approached 0.

Now consider the problem (8.14) with this choice for S
1,p

and S and denote the eigenvalues and eigenfunctions by
2,p

0 < lop Np

and

(ul pV I  ),.. ( v N  ,.-.-.-

where N = dim S . As with the h-version, the accuracy of the

approximate eigenpairs may be assessed with the results of Section

8. A

Theorem 10.2. Let S and S be chosen as in (10.31).
lp 2,p

Suppose w) is an elgenvalue of (10.18) with multiplicity q.
k

Then

(10.32) k - I  C(h)p - 2 .1 7 7 9 2 4 
, J = k,...,k+q-1,

j,p

and

(10.33) !Iu - Uk l, + ; , - V , C(h)p - 1.088962 "

k,p Uk 110 k,p k~l C"D ~

Note that we have given the eigenfunction estimate the simplified

form it has when (i is simple; it would have to be modified if

(A) has multiplicity greater than 1. See the statement of

Theorem 10.1. "• .-

Proof. Suppose wk has multiplicity q and let w be either

component of one of the eigenfunctions corresponding to We

have seen that w can be written in the form w = w1 + w2  where
2 Hk  2"..

w e Hk(0), with k > 3, and w is a sum of terms of the type

(10.19) with (T ry 0 and with coordinate centers at the vertices A

0

of Q. Because r0 .544481 . in (10.19), from (10.30) we have
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-1.088962 ..
< C(h)p

p

(10.32) and (10.33) follow from this estimate and f8.44) - (8.46). .

To illustrate the performance of the p-version we consider,

as with the h-version, the relative error in the energy norm mea-

sure of the degree to which (u ,v ) can be approximated by S
P

(cf. (10.29)). Figure 10.4 presents the graph of lell! as aE,R

function of p, for various values of h. Again the log-log

scale is used. We see that the slope is close to the theoretical-

ly predicted -1.088962.... This is valid only for p > 3, but

recall that all our results are of an asymptotic nature.

3..3

4'.'- i

• • - .4,
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V. - ,ItVw

To assess the relative effectiveness of the h- and p-

versions, to understand, in particular, their dependence on the

choice of Sh and S Pis not easy. Here we content ourselves

with a brief assessment in terms of the number of degrees of free-

dom: N = 2 dim Sh = dim = dim Sp. In Figure 10.5, the rela-

tive error in the energy norm measure of the accuracy is plotted

-2 2
as a function of N. Since N h and N p , the rates of

convergence shown in Figure 10.5 are half those shown in Figures

10.3 and 10.4. We see that with respect to degrees of freedom,

the p-version with h = 1/2 performs better than the h-version .,

with p = 1,2,3, or 4.
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Th___e h-p-Version *p.

In this version of the finite element method accuracy is

achieved by simultaneously decreasing the mesh size h and in-

creasing the polynomial degree p. We here distinguish various

cases. The major ones are:

i. Uniform mesh and uniform p distribution, (i.e., the

polynomial degree p is the same on each mesh sub-

domain, i.e., element);

ii. Refined (non uniform) mesh and uniform p distribution;

and

iii. Refined mesh and selective increase of degree p.

We will now elaborate on cases i. and ii. Case i. obviously com-

bines the h- and p-versions discussed above. In this case one

has

Theorem 10.3. Let S = S S p and-1,(h,p) 2,(h,p) S(h,p) h h

let -k(hp) and (uk,(hp) 'vk,(hp)) be the associated eigen-

values and eigenfunctions. Suppose wk is an eigenvalue of

(10.18, with multiplicity q. Then

(10.34) C hmin(a 0,p-c 0  2 a

!'j,(h,p) -k' 5 C{min h  j k,...,k+q-1,_,h p k -- =a0 ) , = k.. . k q- ,._

p
and

(10.35) ;ION
mi(fl0 p-q

hYo0 hmi 0 0
u -U + 1V ( -V1!,< - C(min h

, , , p 2 00

where ao = .544481... and C is independent of h and p.
or% %

Proof. The basic approximation results for this type of approxima-
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tion were proved by Babuska and Suri (1987b]. (10.34) and (10.35)

follow directly from these results and (8.44) - (8.46). C

In case ii. we will consider only geometric meshes with ratio

factor .15; see Figure 10.6. This ratio is close to optimal.

The space S h ) =PsP is now more complicated. sP is defined
(h,p) h h h

by

1h! (U E H (0) uj is the image of a polynomial
* ij

in a square

'N ,...

or a triangle

T = {( Tj) 0 < 17 e s , 0 - < 1),

for all subdomains I.. in the mesh).

For a more detailed description of see Babuska and Guo
h

(1987b, c] and Szabo (1986]. For a thorotgh discussion of the

h-p-version in the one dimensional setting, we refer to Gui and

Babuska (1986].

Figure 10.7 shows the performance of the p-version on meshes -

with various numbers of layers n, as well as the performance of

the p- and the h-versions for uniform meshes. We typically see

a reverse S curve for the accuracy of the p-version on a geo-

metric mesh. The first part of the curve is convex and then it is

concave, the slope approaching N The h-p-version appears as

the envelope of the p-version on geometric meshes with various

numbers of layers. This envelope shows the optimal relation be-

tween the number of layers and the polynomial degree. In Babuska

IN 2and Guo (1987b], it is shown that if u B (0), with 0 < 13 < 1,

1383



then a geometric mesh and a proper selection of the degree p

leads to the exponential rate

1 ell! !< CeE,R

C

A n:2-

// A A 0

0.15 .°.'.%

AA

Figure 10.6. The Strongly Refined Mesh with n =2 Layers.,-,
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Using this approximation result and the results of Section 8, we

obtain

Theorem 10.4. Suppose the components u. and v. of the eigen-
2a

functions belong to V (in our case q = .544481... + r)• Then

with a proper choice of geometric mesh and the degree p we have

(10.36) 1Wk,p - 1 < Ce - 20 'N

and

(10.37) Iup- ukf + ivk - Vkl Ce•"k,p k 1,0 k ,p k 1,0 -")

where a depends on the ratio of the mesh, the relation of p

and the number of layers, and the domain, but is independent of

N.

Proof. (10.36) and (10.37) follow directly from the results of

Section 8 and the above estimate for !e!!E.
E,R'

Figure 10.7 clearly shows the effect of the proper selection 4-

of meshes and element degrees on the effectiveness of the finite

element method. It also shows that the optimal choice depends on

the required accuracy. The design of the mesh and selection of

the degree of the elements is a delicate task. Various approaches

to deal with this problem are in the research phase. One promis-

ing approach is to apply the principles of artificial intelligence

(expert systems). For further details we refer to Babuska and

Rank (1987]. Figure 10.7 shows only the dependence of the accu-

racy on the number of degrees of freedom N. It is also essential

to judge the complexity of the method with respect to such factors

as number of operations, computer architecture, user's interaction,

etc. For a detailed study of computer time, accuracy, and perfor-
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mance for various numbers of degrees of freedom, we refer to

Babuska and Scapolla [1987]. We can see directly from Fig 10.7

that the proper mesh design leading to an accuracy of 5% has 2

layers (the ratio of the sizes of elements is of order 50) and

p = 3. For an accuracy of 3%, the optimal p is 3 or 4 and

the number of layers is 2 or 3 (which leads to size ratios

from 50 to 300). The number of degrees of freedom is 200 -300

(compared with 25,000 - 170,000 for a uniform mesh and p =).

3) Solution of the Matrix Eigenvalue Problem.

We have seen that the approximation procedure developed in

Section 8 leads from the eigenvalue problem (8.10) or (10.18) to

the generalized matrix eigenvalue problem (8.15), and that the

matrices A and B in (8.15) are sparse if the bases for the

trial and test spaces are properly chosen. From the error esti-

mates in Section 8 we know that the low eigenvalues of (8.15)

(approximately 10% of them) give reasonable approximations to .,

the exact eigenvalues. In fact, we have proved convergence for

each fixed eigenvalue, but convergence does not occur for a fixed

percentage of the available eigenvalues. If A and B have

dimension N, then N approximate eigenvalues are available, but

raN],h h--aN, as N---+0, where 0 < a < 1 and [aN] is the -.

integral part of aN. The 10% figure we mentioned above is

related to engineering accuracy and practice only. The size of

the matrix problem will thus be much larger than the number of

eigenvalues we are attempting to calculate. The matrix eigenvalue

solver, a crucial component of the complete computational proce-

dure, should therefore be designed to effectively find the low
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eigenvalues of large, sparse, generalized matrix problems. An

appropriate version of the Lanczos algorithm is suitable for this

class of matrix problems and is often used in practice. We refer

to the monographs by Parlett (1980] and Cullum and Willoughby

[1985]. Because the extraction of the eigenvalues is very expen-

sive, various "tricks" are used in engineering practice to reduce

the sizes of the matrices under consideration. We will not go

further in this direction.

Remark 10.2. It should be emphasized that, generally, the goal of

the computation is to find, in addition to the eigenpairs, certain

functionals of the eigenfunctions (u,v) - e.g., the stress inten-

sity factors, which are combinations of the derivatives of u and

V. We will not pursue this direction since it lies beyond the

scope of this article. We refer, e.g., to Babuska and Miller

[1984] and Szabo and Babuska (1986].

Remark 10.3. The complete computational resolution of an eigen-

value problem is influenced by a wide range of factors. Some of

the most impcrtant of these - the smoothness of the eigenfunctions

and the approximation properties of the trial and test space, e.g.

- have been discussed in detail. Others - the accuracy of the

matrix eigenvalue solver and the relation between the accuracy of

the matrix solver and the error ik,h - (k' e.g. - have not been

mentioned or have only been mentioned briefly. While these latter

factors are important, we will not be able to pursue them. We

also note that the important function of a posteriori analysis of

computed data has not been discussed. Likewise we have not dis-

cussed any adaptive approaches. For some ideas on the assessment
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~ of the quality of the finite element computations we refer to the

survey paper of Noor and Babuska (1987].

B. Vibration of a Membrane

We consider here the eigenvalue problem associated with the

small, transverse vibration of a membrane stretched over a bounded

region Q in the plane and fixed along its edge F = 0Q, i.e.,

the eigenvalue problem

(10.38 ) -iu= 0 on r 
%

(cf. Subsection 1.B., in particular, (1.27)). We turn now to a

discussion of the basic steps 1), 1'), 2), and 3) (cf. Subsection

A. above) in the finite element approximation of the eigenpairs of

(10.38). The discussion can be brief since these steps are simi-

lar for the two problems (10.1) - (10.2) and (10.38), in fact for

any eigenvalue problem. Q

1) Variational Formulation

(10.38) is a special case of problem (3.1) and the variation-

al formulation (3.18) of (3.1) was derived in Section 3. Thus we 4
see that the variational formulation of (10.38) is given by

u c H 0 ) , u i 0

(10.39) au av au a Ai
- + -idxdy = uv dx, V v E H(Q).."-y 07y 00..'

[rau av J
a(u ,v) = x  +dxdy = u vv dxdy %

Lax -x + ~-y ay -J vdd

1446
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be defined for u,v e H = H (Q), and let

blu,v) = fuv dx :'0

be defined for uvE W = L2 (Q). Then (10.39) has the form of

(8.10), and a and b are symmetric forms, (8.1), (8.7), (8.32),

and (8.33) are satisfied, and H c W, compactly. All of this can
, .. :

be easily seen for the concrete problem we are considering; it also

follows from the more general discussion in Section 3. (10.39) is

a selfadjoint, positive definite problem. It has eigenvalues

0 < k 1 ! k 2 . ,+O
2/

and corresponding eigenfunctions

u1 ,U2 ,..

which can be chosen to satisfy

Vu..7v. dxdy = "u.u dxdy =8i.

0 0 .

1') Regularity of the Eigenfunctions

From Theorems 4.1 - 4.4 we obtain the following regularity

results for the eigenfunctions u. of (10.39) (or (10.38)).
k

•) For k > 2, if r = o is of class C, then u. E1 ,%

kH (0)

*) If r is of class COD , then u C (Q).

•) If F is analytic, then u. is analytic in .:

) If Q is a curved polygon with analytic sides and with

vertices Ao,A 1,... then u.i is analytic in A - UA.
1 J

u. is singular at the vertices; the strengths of the
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singularities depend on the interior vertex angles.
2 5-

Moreover, u E V2()_ for properly chosen 3.

2) Discretization of (8.10) and Assessment of the Accuracy of the

Approximate Eigenpairs

Suppose 0 is a polygon. By a triangulation or mesh on .

we will mean a finite family r = (T __i= satisfying

* each T. is a closed triangle,

M(r)0 = U,,-
i=i "1'

* for any Ti and T E T, Ti n T = 0 or a common vertex.1
or a common side.

For 0 < a < n, a triangulation T is said to be r-regqular if

.55'% . 4-

the minimal angle of every triangle T e T is greater than or.4/s/

equal to a. For any T, let

h = h(T) = max diam Ti
*i=1,.....M('r) ."

and

h(T) = min diam T..

. is said to be q-quasiuniform if

h(r) <

We will often view triangulations T = as parameterized by h

= h(T) and consider families r = {r) = {Th) of triangulations

that are a-regular. An example of a n/4-regular, 1-quasiuniform

triangulation of the domain 0 = {(x,y) -1 < x < 1, -1 < y < 1) 4>.

is shown in Figure 10.8. It is called a uniform triangulation.

146

S.* -. ...-.- 4-.-..



jvvvv'Irv~rI~r TV W1 INI%
"y

p

0 0;

I I

RegardFigur 10.8 Aprxmto pnoprmie TriangulTion 'r i

Faiyof aeu triangulations f 0, antphe,,..ne

(10.40 ) in Hu . S'Ci0'l

for ach u H k 0 ndfran

andle

p 1.
(10.40b) i Sn ('r P - ~ S,() Cnk 1 u! ,

SP p

k
for any u H E H () and for anyr

00

147



where

(10.41) M = min(k,p+l).

The constant C in (10.40a,b) is independent of p, 'r, and u,

but depends on O,k, and a. For a complete proof of these esti-

mates we refer to Babuska and Suri [1987b].

Now define

(10.42) S1,(h,p) 2,(h,p) =S(hp) = S0 (r).

Since (10.39) is selfadjoint and positive definite and satisfies

(8.32), we see that (8.11) and (8.12) are satisfied. (10.40b)

shows that S accurately approximates the exact eigenfunc-
(h,p)

tions and thus that (8.13) is satisfied. If a suitable basis is

chosen for S(hp) , then the matrices A and B in (8.15) will

be sparse. The issues raised in a., b., and c. in Subsection

A.2) above have now been addressed for this choice for S (hp)'

Note that in using the notation S(h,p) we are identifying h =

h(T) with T. An alternate, and more explicit, notation would be

S (T,P)

Now consider problem (8.14) with Sh defined as in
(h,p)

(10.42) and denote the approximate eigenvalues by
r.

1,(h,p) N,(h,p)

and

Ul 1 (h p) ..... UN, (h,p) '

where N = dim Sh . To assess the accuracy of these approxi-
(h,p)*

mate eigenpairs, we apply the results of Section 8, obtaining

Theorem 10.5. Let S (hp) be selected as in (10.42) and suppose

ft 148 0
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j is an eigenvalue of (10.39) with multiplicity q. Then

(10.43) X -Aj < Ct j...j+q-1
t,(h,p) j 2k-2'p A '

and

(10.441 IU
- h

Ph p - uj 11 -.:--
p

where k 1 is such that the eigenfunctions corresponding to X

are in H k(Q) and p = min(k,p+l). Note that we have given the

eigenfunction estimate the simple form it has when X. is simple;

it would have to be modified in the general case. See the state-

ment of Theorem 10.1.

Proof. Suppose A has multiplicity q. Then (10.39) has eigen-

functions uj, ...,U J+q_ 1 , associated with Aj; by assumption,

these eigenfunctions are in Hk (0). Thus, by (10.40) - (10.41),

F. ' we have
(10.45) = max inf hu X

h =j,...,j+q-1 zrS

(h~p)

< C4 max IuelikO =
V=j,...,J+q-1 

p

(10.43) and (10.44) follow directly from this estimate and (8.44)
--

'S~.46).

Remark 10.4. If our membrane is free instead of fixed along its

edge, then we would have considered the Neumann boundary condition

U9u
= . In this situation the eigenvalue problem would have the

variational foundation

u E H, u o 0
(10.46) (a(u,v) = Lb(u,v), S
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where a and b are as above, but

H u :u E H (0), udxdy 0),

U1 = 11U

We would choose

S(h,p) = (u : u CS P(i), udxdy = 0)

for the trial and test space. Then all of the hypotheses in Sec-

tion 8 are satisfied, approximation results similar to (10.40) can

be proved, and for the approximate eigenpairs, the error estimates

(10.43) and (10.44) follow. We note in particular that the

Neumann boundary condition is only implicitly stated in (10.46),

i.e., is natural, and thus that the boundary condition need not be

imposed on the trial and test functions. This fact makes imple-

mentation easier, especially for domains with curved boundaries.

See the discussion of natural and essential boundary conditions in

Section 3.

C:
* 3) Solution of the Matrix Eigenvalue Problem

The comments made in Subsection A.3) apply here as well.

Multiple Eigenvalues

The results proved in this Subsection and in Subsection A.

cover the case of multiple eigenval,,es. Recall that the estimates

for IX - I and Iu - u are in terms ofJ,(h,p) j J,(h,p) j 1,0

max inf Nlui - xIl O'o/h e= . . t-
4e z ,(h,p)

where q is the multiplicity of and u .... u are the
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corresponding eigenfunctions. We now make some comments on mul-

tiple eigenvalues and then make an application of the refined error

estimates for multiple eigenvalues proved in Section 9.

The eigenvalues and elgenfunctions of the membrane problem on

a square, i.e., the problem

( 1 0 .4 7 ) 

.u.o-

= 0 on F, ._

where

Q = ((x,y) IxIIyI < -1),

are easily seen to be given by .

=k 2 + 2

k,t

and

Uk, = sin kx sin ty, k,e = 1,2,....

Hence we see that there are multiple eigenvalues. (10.47) is

typical of problems with symmetries ((10.47) is symmetric with

respect to x and y), and we thus see that multiple eigenvalues

are common in applications.

For i = 1,2,..., let Xk be an eigenvalues of (10.47) of
k

multiplicity q,, i.e., suppose

k kk k+ = " = +qi 1 Ik+q A k

Note that we are here using the notation introduced in Section 10,

whereby kI = 1, k2  is the lowest index of the second distinct

elgenvalue, etc. Suppose now that qi > 1, i.e., that X isI ~k.

multiple. Let (S h be any family of finite dimensional sub-

1spaces of H (Q) satisfying (9.14). Recall from Section 7 that
J0
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the qi approximate eigenvalues

kih' . ki+qI-1,h

converge to Xk. While these approximate eigenvalues may be

equal, i.e., we may have one distinct eigenvalue with multiplicity

qi' consideration of the situation in which we choose S to be
h

*1S (,r), where T is the triangulation shown in Figure 10.8., shows

that they may not be equal, since some of the symmetries present

in (10.47) are not present in the discrete problem. Nevertheless,

Theorim 10.5 provides estimates for each of the errors .'J

Ik +j-l,h ... X ki+J-l1' , = 1..-,q i" As we have seen the esti-

mates are ,....

ki+j-l,h-Xk+J-Il h C

C[ 2,
(10.48) - C[ sup inf ju-x 1 ,0 ]

2

uEM( Ak ) XS (r)

j = 1, ....q1 '

which suggest that the error in X depends on the degree

to which S (T) can approximate all of the eigenfunctions corres-

ponding to '

Recall that in Section 9 (Theorem 9.1) we proved refined

estimates, namely,

(10.49h' = 1,....qi'

4k +j-1,h ki +.

where

F (h) inf inf
uEM(Ak ) F S (T )
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a(uukh) =a(u,u _ ) = 0.
i

Now for the specific problem (10.47), all eigenfunctions have the

same smoothness properties and S (T) with T given in Figure

10.8, will approximate them all with the same asymptotic accuracy

and (10.48) and (10.49) would each lead to the same estimate in

terms of h. The multiplicative constants in the estimates could,

however, be different. We further note that there are eigenvalue

problems for which the different eigenfunctions corresponding to a

multiple eigenvalues have strikingly different approximability

properties. For such problems (10.49) would provide a striking

improvement over (10.48).

As an example of such a problem, consider -

-5'67 u' (x) = ?.' (x)u, x I =(

(10.50) u(-71) = u(U),

1. u'-_) = 1 u' (n)

where

OWx) = x-1Xi sgn x, 0 < a < 1.

It is easy to check that the eigenvalues and eigenfunctions are as

shown in Table 10.1.

153 * - I
'" * :



Table 10. 1

Eigenvalues and Eigenfunctions of the Eigenvalue Problem (10.50)

U..

0 0.0 1

1 1.0 cos q(x)

2 1.0 sin p(x)

3 4.0 cos 29(x)

4 4.0 sin 29(x)

We see that A1  2 X 3  4  etc.

We cast this problem into the variational form (10.1) by

choosing

{u(x) =uh d < ®, u(-n) = u(n), p'udx = 0},.

'V%

a(u,v) = v dx,

and

b(u,v) = uvq'dx.

With these choices (8.10) is equivalent to (10.50), with the

understanding that the eigenpair (xO u (0,1) of (10.50) is

not present in (8.10). Note that hjui = Hul Let l11=1,

(b(u,u))1 /2 . The assumptions made in Section 9 are clearly

satisfied. Our approximation is defined by (9.4) with

S S =S = (ucH u linear on
1,h 2,h h

(-n+jh, --+(j+l)h), j 0,1,...,n-1),

where h = 2f/n and n is an even integer.

154

• _



wo -V]L W_ 4. . . . . . . . . . rvlr.
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Now this choice for (Sh) it is easily seen that

(10.51) inf m lcos q'(x) - tjj2 Ch2Xr= Sh  a

and

2 Ch 1+a
(10.52) inf llsin 9(x) - x l -

a

Hence from Theorem 10.1 we would expect X and X the two

1,h 2,h'thtw

approximate eigenvalues that converge to the double eigenvalue A

= A 2, to have different convergence rates.

From Tables 10.1 and 10.2 we can find the errors in A h,i' i

= 1,2,3,4. for a = .4. These errors are plotted in Figure 10.8

in log-log scale. We clearly see the different rates of conver-

2 1+a 1.4gence, specifically seeing the rates h and h = h for

the errors in Aih for i = 1,3 and i = 2,4, respectively,

as suggested by (10.51) and (10.52). It should be noted that the

estimates presented in Theorem 10.1 are of an asymptotic nature in

that they provide information only for small h (or large n),

i.e., for h (or n) in the asymptotic range. From Figure 10.8

we see that for a = .4 we are in the asymptotic range quite

quickly, say for n 2 16.

Consider u 1h and u2 h , the approximate eigenfunctions

corresponding to k and X respectively, normalized by

= 1. The results of Section 9 suggest that ulh should be

close to C cos jp(x) and u2 ,h close to C sin V(x) (cf. (10.51)

and (10.52)), where C is such that C sin f(x) and C cos 9(x)

are normalized by 11ID = 1, i.e., C = -1 /2  To illustrate

this point we have computed Ci and C2 i 1 1,2,3,4, so

12
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that

JC i H = IUi)hC cos V(x) C(i ) sin p(x)ll I =1,2

, uio2(x) - C i) sin 2v(x)IIa , a' 3

O is minimal. We would expect that

(10.53) C (2), C'~ (4), CM C(3 01 ' 1 ' 2 ' 2

and

(10.54) C(l) =C 2) = C 3) = C 4) C = .564189583...

1 2 1 2

Table 10.2 shows some of the results for a = .4. We see clearly

the results predicted in (10.53) and (10.54). Table 10.2 also

shows that K(1) < K(2) and K(3) < K(4), as we would expect.

The last columns in Table 10.2 and Figure 10.8 show that the

ratios

i+l,h- , i = 1,3,
A i,h i

increase as h----+O. This shows that in the whole h-range we con-

sidered, the approximate elgenvalues converging to a multiple

eigenvalue are well separated.
1-
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Table 10. 2

Numerical Solution of the Eigenvalue Problem (10.50) for a =.4

n i X i. K(i) c~i ~i C+, i2i~~~h 1 i.iA

1 1.0716754 .2704 0 .5637791 0 -. 1124891 -16 1.5562955

8 2 1.1115481 .3423 0 -. 4151973 -13 .5636998 0

3 5.0394692 .1075 +1 .5558919 0 .1317809 -12 1.1943249

__4. 5.2414639 .1191 +1 .5022638 -13 .5516234 0_______

1 1.0175850 .1329 0 .5641633 0 .1596754 -12 2.0041570

16 2 1.0352431 .81 0 -. 8916589 -2 .611

k3 4.2691915 .5259 0 .5636643 0 .1124328 -13 1.2575063

4, 4.3385100 .5869 0 -. 2689727 -12 .5637697 0 ______

1 1.0043740 .6618 -1 .5641879 0 .6411454 -11 2.6003887

32 2 1 O113741 .1067 0 .1323421 -10 .5641830 0

3 4.0666055 .2589 0 .5641561 0 .1970954 -10 1.4067517

4 4.0936974 .3067 0 -. 7375504 -10 .5641613 0 ______

1 1.0010921 .3305 -1 .5641895 0 .7729760 -9 3.5190001

64 2 1.0038431 .6202 -1 .8670648 -9 .5641883 0

3 4.0166006 .1289 0 .5641875 0 .3641341 -10 1.6437659

__4, 4.0272875 .1653 0 .1415775 -8 .5641858 0 ______

1 1.0002729 .1651 -1 .5641895 0 .4535626 -7 4.9215830

*18 2 1.0013431 .3665 -1 .3251219 -7 .5641893 0 -

3 4.0041468 .6440 -1 .5641895 0 .4409247 -7 2.0107071

V4, 4.0083380 .9135 -1 -. 9705611 -8 .5641890 0 ______

1 1.0000682 .8255 -2 .5641896 0 .8070959 -5 7.0542522

26 2 1.0004811 .2193 -1 .7269570 -6 .5641895 0

3 4.0010365 .3217 -1 .5641896 0 .6435344 -6 2.5706705

4, 4.0026645, .5162 -1 -. 2601000 -6, .5641895 0,
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Consider next the case when q = .01. Table 10.3 presents

the same result-, fo' a .01 as Table 10.2 does for A = .4.

Figure 10.9 shows the graph of

i+l,h - i+1
log ih i i 1,3.

as a function of the number of intervals n in a semi-logarithmic

scale. The computed values are indicated by O's and x's. The

graphs are formed by interpolation (solid lines) and extrapolation

(dotted lines). We note three related phenomena that did not occur

with a = .4. For small n the approximate eigenfunction associ-

ated with XI, h  is U 1, n- sin 1(x), in contrast to Ul, h

ated2 wihA i-l J 1  1/2 h
-1/2 cos q(x) when a = .4. We remark that a/ cos ,p(X) is

more easily approximated by Sh than is i sin V(x) for all

0 < a < 1. This anomaly is present for n 64 but for n 128

we get results which are in agreement with the (asymptotic) results

in Section 9. For X3,h and X4,h we have to take n 256 to

get results which agree with the asymptotic theory.

For a = .01 we see that K(2) < K(1) for small n(n s 64)

and K(2) > K(1) for large n and K(4) < K(3) for small

n(n5128) and K(4) > K(3) for large n. Recall that K(2) >

. K(1) and K(4) > K(3) for all n when a = .4.

Finally we note that when a = .01 the ratio

i+l,h i+l i = 13

i,h i .

first decreases as n increases, then for some n the two elgen-

value errors become equal, and then the ratio increases again.

This is in contrast to the case for 0 = .4, in which the ratio
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increased over the whole range of n values. We further note

that the value n for which the eigenvalue errors are equal -

n = 70 for i = 1 and n - 160 for I = 2 (see Figure 10.9) -

marks a transition in each of these situations from u p-12
-1/2 -/2an-1

sin -V(x) to u - 1 cos p(x) and u h -1/2sin 2t'(x)

-1/2to u3,h cos 2p(x), from K(2) < K(1) and K(4) < K(3)

i+1,h i+1
to K(2) > K(1) and K(4) > K(3), and from + h , I

i,h I

1,3, decreasing to increasing.

We have thus seen that for a = .4 the numerical results are

in concert with the (asymptotic) results in Section 9 for the whole

range of n considered, while for a .01 they are In disagree-

ment for small n, but are in agreement for large n. We now make

an observation that further illuminates these two phases of error

behavior - the pre-asymptotic and the asymptotic. Toward this end

we note that If (A1 ,ul), with Hul Ib = 1, and (X h~ul h )'

with lul h11b = 1, are first elgenpairs of (9.1) and (9.4), res-

pectively, then

0 X 11H= u- u 2

22
-1 ' ,h - l 1,h-  la I ,h-UI b !-!

(10.55) inf [Ix-u l11a 1 2 1" i ui1b-2
XE': Sh,.

UrII 1b= 1

If X 1  is a multiple eigenvalue, then the u1  in (10.56) can be

any corresponding eigenvector with HltUtb = 1. (Note that we are V.'
1 b

here assuming u1  and ulh have fl.b-length equal 1, whereas

in (10.2) and (10.5) they are assumed to have la-length equal

to 1.) The first inequality in (10.55) follows from the minimum
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principle (8.35) and has already been stated in (8.42). The first

equality in (10.56) follows immediately from Lemma 9.1 with (k,u)
,.%%

(Al11u), w = Ulh , and A = a(ulh,Ulh) = k,h If X £ Sh '.1

with 1lIfb 1, then from the minimum principle (8.35),

(10.56) A - A < a(xX) - A
1 ,h 1 1- :.

Again from Lemma 9.1, this time with with (X,u) = (Xlul), w ='T

and A = a(x,x), we have

2 2
(10.57) a0 (X,X) A1 = 1IX-u 111a  X ""IX ulib

The second equality in (10.55) follows from (10.56) and (10.57).

It Is clear from the above discussion that u 1  can be any eigen-

vector corresponding to X

From (10.55) we 1,ive
2 2

(10.58) ,hX1 -u X -ua  V X Sh with IXIJb = 1

If x is c[1 -close to u., to be more precise, if x is taken
a-

to be the a-projection of uI onto Sh (cf. (8.17)), then the

second term as the right side of (10.58) is negligible with respect

to the first term. This follows from the compactness assumption

made in Section 9. On the other hand, if Ilul-xl a  is not small,
1 a

X - may still be small because of cancellation between the
1,h 1

two terms on the right side of (10.58). Regarding the case a =

.01, this explains why for h large (the pre-asymptotic phase), we

-1/2
can have ul h sin ( (x) and K(1) > K(2), and yet have

h,1' the approximate eigenvalue associated with u 1h' closer to

1 than is 2,h' the approximate eigenvalue associated with

u2h cos 'p(x), while for h small (the asymptotic phase),
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we have u n1/2 cos V (x), k(l) < k(2), and Ah closer to

X tanisA 2 ,h' hwn that the eigenvalue error, A~ i,,h Ai

2
is governed by inf Ux-u ilI

The analysis of example (10.50) we have presented is taken

P
LN from Babuska and Osborn [1987].
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Table 10.3

Numerical Solution of the Eigenvalue Problem (4.1) for a = .01

n I h,i K(i) C2h, - i "
____ ___ _ _ ___ ___h,i i

1 1.0520268 .2338 0 .8181940 -1' .5634386 0 1.0171143

2 1.0529172 .2268 0 .5645965 0 -. 2916448 -11

3 4.8576239 .9593 0 -. 9346720 -13 .5597529 0 1.0164293

4 4.8717141 .9615 0 .5604533 0 .1167277 -11

1 1.0128661 .1223 0 .8717399 -10 .5635957 0 1.0111689

2 1.0130098 .1052 0 .5647369 0 -. 8480131 -916

3 4.2088367 .4650 0 .2507177 -10 .5636658 0 1.0087030

4 4.2106542 .4577 0 .5642694 0 -. 3101833 -10

1 1.0032139 .7274 -1 -. 9345818 -9 .5636031 0 1.0068764

32 2 1.0032360 .3568 -1 .5647430 0 .1273043 -7

3 4.0515675 .2384 0 .3745461 -9 .5638178 0 1.0057284

14 4.0518629 .2205 0 .5644172 0 -. 4115544 -9 _-______,

1 1.0008063 .5369 -1 -. 1311961 -5 .5636032 0 1.0017363

64 2 1.0008077 .3398 -1 .5647430 0 .2462939 -7 ..

3 4.0128623 .1343 0 .2743681 -7 .5638240 0 1.0035997

"_4 4.0129086 .9792 -1 .5644235 0 .3196172 -8 ..__.

1 1.0002018 .4196 -1 .5647430 0 .3356056 -5 1.0064420

2 1.0002031 .4775 -1 .7414162 -6 .5636032 0128

3 4.0032196 .9166 -1 .2379072 -6 .5638239 0 1.0010560

4 4.0032230 .9745 -2 .5644235 0 .1197135 -5 __,_-"

1 1.0000504 .4372 -1 .5647429 0 .1061527 -4 1.0218254

256 2 1.0000515 .4614 -1 -. 1553659 -4 .5636031 0

3 4.0008054 .5011 -1 .5644234 0 -. 2123278 -4 1.0031040

14 4.0008079 .7741 -1 .1165012 -5 .5638238 0 _____

.. ,. %*
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C. Eiaenvalue Problems for General Second Order Elliptic Oera-

tors.

We consider here the approximation of the eigenpairs of gene-

ral second order elliptic operators. This problem is, in large

part, similar to those discussed in Subsections A. and B. above;

we will thus be brief, discussing in detail only those issues that

have a treatment in this case that differs from that for the L-

shaped panel or the membrane, or those issues that did not arise

with those problems.

Consider the eigenvalue problem

(Lu)(x) = k(Mu)(x), x E 0
(10.59)

L(Bu)(x) = 0, x E r = ao,

2where 0 is a polygonal domain in R , L is given in (3.2), M

in (3.3), and B in (3.4), L is assumed to be uniformly strong-

ly elliptic (cf. (3.5)), ai.,bi,c, and d to be bounded and

measurable, and d to be bounded below by a positive constant

(cf. Section 2).

In Section 2 we saw that (10.59) has the variational form

(8.10), (cf.(3.18) and (3.20)), with H1  = H2  = H0(0) in the case
1 H(Q) in the case ,

of Dirichlet boundary conditions and H, = H2 = 0  in the case

of Neumann conditions, and a and b given in (3.14). (8.1) -

(8.3) hold, (8.2) and (8.3) being a consequence of (3.5), provided

a0  b2

(10.60) Re c(x) - +

where b max !b (x)! (cf. 3.17). We remark that (10.60) can

i=1,2

be easily achieved. It does not hold for the given operator L, L
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can be modified, by adding an appropriate multiple of d(x) to %

c(x), so that it does hold. This change shifts the eigenvalues

and leaves the eigenfunctions unchanged. We also see that (8.7)

is satisfies with W 1 = W2 =L2)(159
= 2 (0). Thus (10.59) has the form of

the problem analyzed in Section 8.

We remark that in this subsection, since we are not imposing

any selfadjointness assumptions, the spaces H and S(hp)
' -R

S h,p, must be taken to be complex and the eigenvalue parameter

X must be considered complex.

As we have seen, the selection of the trial and test spaces .

SI,(h,p) and S2,(h,p) is guided by the regularity properties of

the exact eigenfunctions and adjoint elgenfunctions. In general,

determining this regularity and then using it to choose effective

trial and test spaces is a delicate task. The regularity can

depend on the coefficients in the differential equation, e.g., on

where they have discontinuities and where they are smooth, and on

the domain, as we have seen with the L-shaped panel. We will not

go further in this direction, but will instead assume the eigen-

functions belong to H (0) and the adjoint eigenfunctions to
k 2

H (0), and select trial and test spaces so as to reflect this

assumption.

Remark 10.5. For eigenvalue problems with rough coefficients,

which arise in the analysis of vibrations in structures with rapid-

ly changing material properties (such as composite materials) it is

known that the elgenfunctions do not lie in any high order Sobolev

space. Nevertheless, for one dimensional problems, their regular-

ity can be understood and, based on this understanding, one can
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select trial and test spaces that lead to very accurate and robust 4

approximations. These trial and test spaces are not of the usual

polynomial type, but instead closely reflect the coefficients.

For details see Babuska and Osborn (1983, 1985]. Cf. also Subsec-

tion 11.C.

Remark 10.6. The mathematical study of the use of regularity

information for the optimal selection of trial and test functions

belongs to the area of complexity and information based approaches.

See, e.g., Wozniakowski [1985].

Based on the information that the eigenfunctions lie in
k Ik 2_.>

H (0) and the adjoint elgenfunctions in H (0), with kl ,k2 -
2A

1, it is appropriate to discretize (8.10) by choosing

SP(T), for Dirichlet conditions

(h(hP) =2(h'P) =sP(T), for Neumann conditions,

as in Subsection B., where T E 7 and 7 = (h = (thi is a fami-

ly of a-regular triangulations of 0. (8.11), with /3(h) = ao/2,

and (8.12) follow from (3.5). (8.13) follows from (10.40).

(8.14) (or (8.15)) can now be considered and from it we get
eigenpairs (I(hp)'U(hp)) which serve as approximations to the **'-

eigenpairs (A,u) of (10.59) (or (8.10)). The errors in the

approximate eigenpairs can be estimated with the results of Sec-

tion 8. j I

Let I be an eigenvalue of (10.59) (or (8.10)) with alge-

braic multiplicity m (by which we mean that -1 is an eigen-

value with algebraic multiplicity m of the compact operator T

introduced in (8.8)). Recall that
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M(X) = the unit ball (with respect to H (0)) in the space

of generalized eigenfunctions associated with k.,

and

M () the unit ball in the space of generalized adjoint

eigenvectors associated with k..

From (1O.40b) in the case of the Dirichlet problem and (1O.40a) in

the case of the Neumann problem we have

(h,p) = uEM(X) inf l)u - .1"

h~

SC h  sup 1 ul1
1I ueM(A) k'

p

where = min(p+lk 1 ) and

(h,p)() = sup inf 11v - n1l,-

vEM*(X) flESh P..
h'p

2 1
h<- -1 sup iUl, k Q

p wEM (k.

where p2 = min(p+1,k2 )-

Let Il(hp),...,X (hp) be the eigenvalues of (8.14) that. . . m '>.

converges to ., let

Mh p(k) = (u u in the direct sum of the generalized eigen-

spaces of (8.14) corresponding to the eigen-

values A (llh,p).....Am(hp) , ui, 1 0  1),

and let a ascent of (A - T).

Applying Theorem 8.2 we have

m
1 '-1i -1I * P',9-

(10.61) P - ( A(h,p) ) I C k< c ()r ()m (h,p) (h,p)
j=1
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II+1-2
h 2<-Ch  -2 p lU ,M R2,I"I.k .*

sup li vU"
k1 +k22 uM(I) 1' 2

p vC:M I P

In light of Remark 8.1 we also have

m

j=1
(10.62)

2' "

1 2
Ch  sup I U11 sup I

- suk I2 O '
1k 2 UEM(X) 1 v'EM(X)p ve M (;L....

From Theorem 8.3 we obtain

__1 1 1/a2,'hM(X)sup [ i ~

(10.63) IX-Xi(h,p)l s C k +k 2  sup iUllklM VsMp k) ,j k.
Np P v M (X ).. ,

Regarding eigenfunction estimates, we apply Theorem 8.1 and

8.2. From Theorem 8.1 we have

(10.64) 8(M( ) ,M (hp) ( ) k 1 sup 'lul 1
uM() "k 1 , 0

Let X(h,p) be an eigenvalue of (10.1) (or (8.10)) such that

lrm A(h,p) = k and let W(hp) is a unit vector satisfyingh- 0 "h") N

(X(h,p) -1 - T) w = 0 for some positive integer C1 -< a.

Then, from Theorem 8.4, for any integer t2 with f < 1 e ' U,
2 2 -:

there is a vector U(hp) such that (k- 1 T) U(h = 0 and

1 +1) /(1'

1h .0]

(1065 2u 1 SUP "-ull

(1065) U(h,p) - W(h,p)l, ch k- u1-M(f1 kp
p I-k J

Remark 10.7. In this section we have considered triangular meshes.
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One could also consider quadrilateral meshes, which are a general-

ization of the type of mesh employed in Subsection A., or curvili-

linear meshes. Since these generalizations properly belong to

approximation theory we will not pursue them. We refer the reader

to Ciarlet [1978], Babuska and Guo (1978b], and Szabo [1986].

Remark 10.8. We have mentioned here only estimates based on the ..

information that u E Hk (0). If we know, e.g., that u E B2(o)

then we can say more, provided a proper mesh is selected.

%,

Remark 10.9. The approximate eigenvalues X.(h,p) here, as in
J%

any finite element method, are defined by the eigenvalue problem

(8.14), which involves integrals over the domain 0. In practice

these integrals often must be evaluated (approximated) by quadra-

ture formulas. For estimates of the eigenvalue error due to this "

quadrature error we refer to Fix [1972]. We note that the use of

a finite element method in conjunction with a quadrature method

often leads to a finite different method for eigenvalue approxima-

tion. For example, if we approximate the eigenvalues of

Ai = Aiu, on 0

= 0, on F

with the finite element method corresponding to p = 1 and a uni-

form triangulation (cf. Figure 10.8) and evaluate the resulting

integrals with an appropriate quadrature formula, we obtain the

standard 5-point difference eigenvalue approximation for the .'

Laplacian (cf. Section 5). This observation is due to Courant

[1927, 1943]. For further results on finite difference methods we

refer to Polya [1952], Hersch (1955, 1963], Weinberger (1956, 1958,

1974], Hubbard [1961, 1962], Kuttler [1970a,b], and Kreiss [1972].
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Remark 10.10. Sinice the eigenvalue k (hp) are defined by a -'-

Ritz method, they are upper bounds for the exact eigenvalues A

X. :5 X (h,p) F e

(cf. (8.42)). If we could derive a lower bound k.(h,p), then

one would have bracketed A .. Much attention has been directed to

the derivation of lower bounds. Weinstein [1935, 1937, 1953, 1963]

developed the method of intermediate problems. Many authors have

contributed to the development of this and other related varia-

tional methods. We mention D.H. Weinstein [1934], Aronszajn and

Weinstein [1942], Aronszajn [1948, 1949-50], Weinberger [1952a;

1952b, 1956, 1959, 1960], Bazley [1959], Bazley and Fox (1961a,

1961b, 1963]. In addition we mention the monographs by Collatz

[1948], Weinstein & Stenger (1972], and Weinberger [1974].

Remark 10.11. Most books and monographs that treat finite element

methods contain a section or chapter on eigenvalue problems. For

a survey of books and monographs on finite element methods we ref,.r

to Noc: [1985]. Of the more mathematically oriented of these, we p.. :

mention Strang and Fix [1973], Oden and Reddy [1976], and Oden and

Carey (1982].
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Section 11. Approximation by Mixed Methods

In Section 3 we saw, in terms of an example, how eigenvalue

problems can be given mixed formulations. Mixed formulations can

be discretized and thereby lead to approximation methods referred

to as mixed finite element methods. In this section we discuss

three such methods. We begin by presenting an abstract result .'

designed for the analysis of mixed methods.

Remark 11.1. Mixed methods for source problems have received con-

siderable attention. We mention Hermann [1967], Glowinski [1973],

Johnson [1973], Oden [1973], Brezzi (1974], Ciarlet and Raviart

[1974], Mercier [1974], Scholz [1976], Raviart and Thomas [1977], _

Brezzi and Raviart (1978], Falk (1978], Babuska, Osborn, and

Pitkaranta [1980], and Falk and Osborn [1980].

A. An Abstract Result

Let V,W,H and G be four real Hilbert spaces with inner
S.,' -,

products and norms (" '" Iv*'lV' (" ")W' "I'1!W' ("")H I H and

G'G' 1" G' respectively. We assume V c H and W c G. Let

A(o,o) and B(p,u) be bilinear forms on HxH and VxW, respec-

tively, that satisfy

(11.la) IA(ora q)I s C Vl illil H  V c 0 , H

(11.lb) IB(4, u) !5 C ! P1v11 1, 11w  V E V, 1.1 E W.

We assume A(o,,p) is symmetric and satisfies

(11.2a) A(o,or) > 0, V 0 g o r H,

and assume
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11.2b) sup !B('P,u)l > 0, V 0 u W.
IPE V

We then consider the following eigenvalue problem:

(a,u) E VxW, (C,u) 0 (0,0) %

(11.3) A(u,V) + B(i,u) = 0, V ip E V

B(a,v) = -V(u,v) G ' V v E W

A discretization of (11.3) is obtained by selecting finite dimen-

sional spaces Vh c V and W c W and considering the approximate

eigenvalue problem

( hUh) C Vh W h ' ( h Uh) (0,0)

(11.4) A(ahp) + B(WIuh) = 0, V V E Vh

B(a hV) = -h(uh,V)G V v r Wh"

We then view (Xh, (ah,uh)) as an approximation to (1,(a,u)).

Given bases for Vh and Wh ,  (11.4) becomes a matrix eigenvalue
,

problem.

Remark 11.2. If we let

a((5,u) ,(4,v)) =A(a,4) + B(D,u) + B(a,v),

b(((-T,u),(v,v)) =-(u,v) ,

and

H =V-W,

then (11.3) can be written as

(a, u) -E H,(a, u) P, (0,0)
(11.5) '.

a (( , u) , (p, ,v )) = b (('7, u) , (ip, v ) ) , V ( , ,,v ) H, "

which has the form of (8.10). Also (11.4) has the form of (8.14)
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with S = S = V hXW (11.3) and (11.5) do not, however,

satisfy all of the hypotheses of the results in Section 8. We

thus need an alternative analysis. This will be provided by Theo- 'eJ

rem 11.1, which is based on the results of Section 7. Note that

even though the methods considered in this and the next section

are not covered by the results of Section 8, it is still useful to

discuss them, to the extent possible, in terms of the basic step

1), 1'), 2'), and 3) introduced in Section 10.

In order to estimate the error in the approximate eigenpairs

(h' (a huh)) we consider the associated source and approximate

source problems:

Given g e G, find (au) E VxW satisfying

(11.6) {A(a,p) + B(@,u) = 0, V E E V

(B(o,v) = -(g,v)0 , V v C W;

Given g E G, find (ah,Uh) • VhXWh satisfying

(11.7) (rA(c lh,W) + B(ip,uh) = , V E • Vh

1B(ch,v) =-(gv) G , V v • Wh.

We assume (11.6) and (11.7) are uniquely solvable for each g '- G.

We then introduce the corresopnding component solution operators:

IS G P--V '

(11.8a) {'g.=.'v

Shg h"

=
T :G--G

(11.8c)

LTg =u,
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1 1. 8d ) h ':IThg U- 

where (a,u) and (ahUh are defined by (11.6) and (11.7), res--

hP hh4

pecivey.(Note that the T introduced here is different from Pea%
that introduced in (8.8).)

The eigenpairs (h(,u)) of (11.3) can be characterized in res-

terms of the operator T. Before establishing this we note that

(u,),' which shows that X > 0. This follows from (11.3)T, T-, u ) G-"-

and the observation that both components u and ar of an eigen-

vector are nonzero. Now, if (A,(a,u)) is an eigenpair of

(11.3), then XTu = u, u o 0, and if XTu = u, u # 0, then there

is a a E V(a = S(Xu)) such that (L,(a,u)) is an eigenpair of

(11.3). Thus X is an eigenvalue of (11.3) if and only if X.1

is an eigenvalue of T. The correspondence between eigenvectors

is given by ut--)(au). In a similar way the approximate eigen-

values defined by (11.4) can be characterized in terms of the

eigenvalues of T Xh  is an eigenvalue of (11.4) if and only if
h' h

-1
X is an eigenvalue of Th; the correspondence between the

eigenpairs is given by uh4--(c-(h,uh).

We assume

(11.9) !IT - ThlIGG--O as h--.O,

where, for an operator A D(A)(cX)--Y, we let

J! Awl!
A = sup 'wI

w-D (A) X

(In particular, we assume T is a bounded operatorn on G.) Since

dim R(Th) < , for each h, the T are compact and (11.9) thus
h h
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implies T is compact. We also note that T is selfadjoint on

G. This is seen as follows. Let v = Tf in the second equation

in (11.6) to obtain
%* <%.

B(SgTf) -(gTf)

Again consider (11.6), but with g replaced by f, and let 'o .

Sg in the first equation to get

A(Sf,Sg) + B(Sg,Tf) = 0.

From these two equations we have

(11.10) (gTf)G  = A(SfSg), V f,g E G.

Using (11.10) and the symmetry of A we get

(Tg,f)G  = (f,Tg)0  = A(Sg,Sf) = A(Sf,Sg) = (g,Tf)G,
G .G

showing T is selfajoint. In a similar way we see Th is self-

adjoint.

We now apply Theorems 7.3 and 7.4 to the operator T and

family of operators (Th) on the space G. By virtue of the

correspondence between the eigenpairs of T and Th and those of

(11.3) and (11.4) we will thereby obtain estimates for the errors

in (kh,(ah,Uh)). The hypotheses have all been shown to be satis-

fied; cf. Remarks 7.5 and 7.6. Let k- be an eigenvalue of mul-

tiplicity m. Since I1T - ThI1GG--*O we know that m eigenvalues I

m (h)-1 of Th converge to X.. Since T and Th

are selfadjoint the relevant ascents are one and all eigenvalues

have equal geometric and algebraic multiplicities. Let M(A 1)

be the eigenspace of T corresponding to A -I  Recall thait M =
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I M( ) =R(E), the range of the spectral projection E associ-

ated with T and A ~ We have denoted this space by M to dis-

tinguish it from the set M of normalized eigenvectors introduced

in Section 8.

Theorem 11.1. Under the assumptions made above, there is a con-

stant C such that

h-GM h-GV 1) G

(11.11)12),

Proof. Let u1 ,..., u be an orthonormal basis for M(X ) From

Theorem 7.3 with a = 1 we have

I~x _ t(h) I C( m 1((T-T h)uipu )Gi + M1TTh G)

1, j=1
(11.12) e1..m

For g,f G we estimate ((T - T h)gIf)G' Adding the two

equations in (11.6) and recalling the definitions of Tg and Sg

in (11.8) we find

(gv)G -A(Sg,w) -B(v,Tg) -B(Sg,v), IV (p,v) V W.

Setting v = (T-T )f and w = (S-S )f yields

(11.13) (g,(T-T~)) M -A(Sg,(S-S )f) - B((S-S )fTg)

-B(Sg,(T-T Mf.

N-xf, note that substraction of the equations (11.7) from (11.6)

~:'t.'re-placed by f) gives
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mum rvl.' ;w

(11.14) A((S-Sh)f,lp) + B(lp,(T-Th)f) + B((S-Sh)f,v) 0,

(?,v) -E Vh Wh •.-.

h h'

Now, combining (11.13) and (11.14) and using (11.1) we have

1(g,(T-Th)f)G = fA((S-Sh)fSg-p) + B((S-Sh)f,Tg-v)

+ B(Sg-V,(T-Th)f)I

Cl1 I(S-S h)fIIH IISg-VII H

+ C2I(S-Sh)f[IvHTg-v!! W

+ c 1 sg-1lIv 1 (T-T h  f,

Setting V = Shg and v = g gives

I ((T-Th)gf)GI Cl11(S-Sh)fIlII (S-Sh)gII .

(11.15) + C2 !I(S-Sh)fII j(T-Th)giW  ,:

+ C2 .i(S-Sh)gIlII(T-T h) f W

Letting g = u1  and f = u in (11.15) yields

(11.16) I((T-Th)uiuj)GI C

+ 2C 2 11 (S-Sh)I GV' (T-Th) '-GW"

(11.11) follows immediately from (11.12) and (11.16). '

Theorem 11.2. Under the assumptions made above, there is a con-

stant C such that

(11.17) . U-U h G  C (T-T h ) IM GG .-..

-. 4.

Proof. This result is an immediate consequence of Theorems 7.1
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and 7.4. Note that we have given this estimate the simplified

form it has when , is simple, and it would have to be modified

in the general case. Cf. the statement of Theorem 10.1 and (8.44)

- (8.46). 0 ,W,

Theorems 11.1 and 11.2 were proved by Osborn (1979] and by

Mercier, Osborn, Rappaz, and Raviart [1981].

B. A Mixed Method for the Vibrating Membrane

We consider, as in Subsection 10.B., the vibrating mem-

brane problem

Au = Au, in 0 41
(11.18).| { 0, on r=ao,

2where 0 is a convex polygon in R , but we will here give it a

mixed variational formulation. Otherwise we will proceed in a

parallel way, discussing in turn the steps 1), 1'), 2), and 3)

introducted in Subsection IO.A. We will clearly see how the vari-

ational formulation influences the entire approximation method.

Before proceeding with the variational formulation, we intro-

duce an additional function space. Let

H(div,Q) = Y= (ai,0y 2 ) : I o2 E H (0) and there exists

z div a E H (0) such that a70 dxdy =

- zd dxdy, V 0 C0)...
00

2( o + C2 + (div u) 2 ]dxdy.
H(div,Q) 1 2

1) Vairiational Formulation

Suppose (A,u) is an eigenpair of (11.18), by which we will
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mean %/

r0 u 1 p
H0 (

( 11.19) [1o ) I..1
Vu" v dxdy = 1 uv dxdy, V V E: 0

0 O "0

i.e., we will assume (11.18) to have the variational formulation

considered in Subsection 1O.B. We now derive a mixed variational .

formulation for (11.18). Introduce the auxiliary variable

(11.20) a = Vu.

From (11.19) we see that a E H(div,O) and -%

(11.21) div a = -1u.

From (11.21) we get

(11.22) v div a dxdy = -A uv dxdy, V v H ( 0)

and from (11.20) and the definition of H(div,Q) we have

(11.23) Ja'v dxdy = Vu.4p dxdy = Ju div Vp dxdy,
V ip c H(div,Q).

Combining (11.22) and (11.23) we obtain

0(au) e H(div,O)xH (0), ((,u) ( (0,0)

a.4 dxdy + u div P dxdy = 0, V i c H(div,O)

(11.24) 0 -".
'4-

v div a dxdy =- uv dxdy, V v H (0).
o 0_

Now suppose (A,(nJ,u)) satisfies (11.24). Let u be the -'
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solution to

{u=Au inr0
(11.25) 

0 iuF

and let

a = Vu.

Then, by the argument used above,

-- . 0
(a,u) E H(div,O)xH (0)

a. dxdy + u div V dxdy = 0, V p H(div,Q)

(11.26) 0 -

v div a dxdy = -. uv dxdy, V v E (Q).

Subtraction of the equations in (11.26) from those in (11.24)

yields

0
(a-a, u-u) E H(div,O)xH (0)

(--o)'p dxdy + (u-u)div ip dxdy = 0, V v H(div,Q)

(11.27)

div(a-a)v dxdy = 0, V v H0 (o).

00In (11.27), if in the second equation we take v arbitrary in ..-

H (0) we get div(o-o) 0, and if we then take w = a-a in the

first equation we obtain 0 f (a-O)"(G-o)dxdy, which implies " ,

(11.28) a = o.

Then the first equation in (11.27) implies

(11.29) (u-u) div ip dxdy = 0, V 0 H(div,Q).
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Let w satisfy Aw = u-u and let p = 7w in (11.29). Since

' div ip u-U, this choice leads to

.. ..(11.30) U =u

(11.25), (11.28), and (11.30) show that (X,u) is an eigenpair of

(11.18) (or (11.19)), and that a = Vu.

In summary, if (A,u) is an eigenpair of (11.18) and a =

Vu, then (X, (u,a)) satisfies (11.24), and if (X,(a,u)) satis-

fies (11.24), then (1,u) is an eigenpair of (11.18) and a = 7u.

(11.24) is the desired mixed formulation.

It is immediate that (11.24) has the form of (11.3) with

V H(div,O),

0)w = H 0(0),

A(a, ) = J' dxdy,

and
rv

B(tp,u) = u div p dxdy.

Furthermore, A is symmetric and (11.1) and (11.2) hold. The .

symmetry of A and (11.1) and (11.2a) are trivial. To prove

(11.2b), let w solve Aw = u and set w = Vw. Then div u = u

and we have

NN
sup i u div ip dxdyl I u div . dxdyl

wcH(div,.) J"

u dxdy
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0
> 0, 'for 0 -U H ()

From the fact that (11.18) has a sequence of positive eigen-

values and from the correspondence between the eigenpairs of

(11.18) and (11.24) we see that (11.24) has a sequence of eigen-

values .'

0 < X2' OD,
0 < 11  2 J..

and corresponding eigenfunctions

(a 1 u 1 ), ( 2 1 u 2 ), .. i

with T. = Vu. and with the (X iuj) being the eigenpairs of
JJ J(1 1.18 ).]]'

1') Regularity of the Eigenfunctions

If (a,u) is an eigenfunction of (11.24), then u is an

eigenfunction of (11.18) and a = Vu. Thus the regularity of 0-

(c,u) can be inferred from the regularity of the eigenfunction

of (11.16), which was discussed in Subsection 11.B. 5-

2) Discretization of (11.24) and Assessment of the Accuracy of

the Approximate Eigenvalues and Eigenfunctions

We will use a discrti-zation of the g'nera1 foi , i 1.4)

It thus remains to select the subspaces Vh c H(div,O) and Wh

H0 (0). This will be done with an eye toward ensuring (11.9) holds

and the terms on the right side of (11.11) in Theorem 11.1 are

small. A mixed method approximation of the associated source -'

problem (cf. (11.6) and (11.7)) has been proposed and analyzed in

Raviart and Thomas (1977]. We will take their choice of trial and

3--..
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test functions. The source problem has also been analyzed by Falk

and Osborn [1980].

Let T be the unit triangle in the ( ,q)-plane whose verti-

ces are a, = (1,0), a2 = (0,1), and a3 = (0,0). Then with

p - 0 an even integer and T associate the space Q(p+) of all

functions ) =(of the form

"1 = po1 (77) + a + a + .. . + a p /2+l7p/2
p 0 1p/2 -

pOlp ,) + 8 ? + 8 +t .7. + 3/2P/ 2 qp/ 2 +l,

.-. -aq

where pol ( ,q) denotes an arbitrary polynomial of degree p
p

and where

p/2

(-1)ai-/i) = o,

and with p a 1 an odd integer and T associate the space

(p+l) of all w of the form

polp ,?) + (I p+l + a(Pp + + a(p+l)/2 l 2 (P+l)/2
p 0' 1 (pa,/

P+. + p(P+l)/2(p+1)/2
*2 p 0 1 + (p+1)/2

where -

(p+l)/2 (p+1)/2

(1- )i . = ( - 1 . = 0 .
i=O i=O

We reark tat fo 4) (p+1),
We remark that for 1 : Q i 1 and u 2 are polynomials of

degree p+1. With a general triangle T in the (x,y)-plane, we

associate the space Q(p+ I) defined by
T
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(p+1) N nN1 WA w -1 (p+71) N1 . P--: unM-r, NO7r 1

Q + {4 (X, y) B T (FTI(x,y)), f . Q (p+ 1)
T = T T

T

where FT ( ,?) = BT( ,n) + b is the linear transformation map-
T T T

ping T onto T and JT = det(BT).

Let v = {r) = {-h} be a family of a-regular triangulariza-

tion of 0. Then for p ;- 0 an integer let

(p+l)
(11.31a) V h QT h "a h Hdiv,O) : T

and

0•
(11.31b) Wh = 0u HO(0) UIT polynomial of degree p, V T

Now we consider (11.4) with this choice for V and Wh.

(11.4) will have elgenvalues

,h  - ... N

and corresponding eigenfunctions

(aI ,h, Ul,h ) ..... (ON,h, UN  h
) , '...

where N = dim (VhxWh). It remains to derive error estimates by

applying Theorems 11.1 and 11.2.

Theorem 11.3. Let Vh and Wh be selected as in (11.31). Sup-

pose the eigenfunctions of (11.18) belong to H+ 2 (0). Then

(11.32) ICk h - Ik - C(p)h 2p+ 2

and

(11.33) 1Ukh Uk1 0  C(p)hP+ 1

Proof. We begin by showing that all of the hypotheses of Theorems

11.1 and 11.2 are satisfied. We have already noted that A is
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symmetric and that (11.1) and (11.2) are satisfied for the problem

(11.24).

The source problem (11.6) is uniquely solvable for each g -

G = (0). rri f ict the unique solltion is (o, u) , where
{,%Au

~- 
g 

:q

u ez H O ) W. ;'
~0)

and

= Vu

(cf. the discussion in 1) above). To see that (11.7) is uniquely

solvable for each g E G it is sufficient to show that g = 0

implies ah and u are zero. Now g = 0 implies, using theh h

second equation in (11.7), that B(ah,V) = 0, V v C W Setting
hF h*

= oh in the first equation and using this fact shows that

A(a h,ah) = 0 which, together with (11.2a), shows that ah = 0.

Then, using the first equation in (11.6) again we get B(qP,uh) = 0,

V C Vh. For our specific problem this is J uh div ip dxdy = 0,

1 E Vh  It is shown in Raviart and Thomas [1977, Theorem 4]

that corresponding to any uh Wh there is a V c V such that N.-

div ih = Uh Using this we thus have f l hi dxdy 0 which

implies uh =0.

It remains to check (11.9). Falk and Osborn [1980, Section

3(d)] have shown that

Tg T

Ch ITg 2 , for p= 0
(11.34)2,

SC h~g for p 0,

186
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which piovos (11.9).

We now apply Theorems 11.1 and 11.2. From Raviart and Thomas

[1977, Theorem 5] we have

{!(S-Sh)g11 0(S-Sh)gWiH(div,Q) < (11Tg p+ + I glP " 4

and "

1(T-Th)g11 , - P ( Tg p+2 , + g 1 g) -.

If g 4 M(k ), then Tg = g and g is an eigenfunction of

(11.18) corresponding to k and by our hypotheses, 1glI+ 2  <"

S.z Thus

(11.35a) II(S-Sh) COh ,OQ "-

M O(0)t() Oh

(11.35b) hi(S-Sh)j HO1 o), divh"-'-'

MH (0),H(div,0)

and

p+1(11.35c) j} (T-Th)1 HO(1 ,C(h
0 0 ~O

MH (Q) H (0)

(11.32) follows immediately from Theorem 11.1 and estimates

(11.35). (11.33) follows immediately from Theorem 11.2 and

(11.35c).

Remark 11.3. Theorems 11.1 and 11.2 estimate the errors in mixed

method approximation of eigenpairs in terms of error estimates for

the corresponding source problems. For our problem, these were

mainly provided by the results of Raviart and Thomas (1977].

Note, however, that estimate (11.34) - the estimate that ensures

the approximate eigenvalues converge - is not proved in Raviart

and Thomas [1977].
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3) Solution of Matrix Eigenvalue Problem %

The matrix problem (11.4) with Vh and Wh given in (11.31)

is large and sparse, but is not positive definite.

C. A Mixed Method for the Vibrating Plate

The eigenvalue problem

U = u, in C'
(11.36) 1 au- 0 , i n 0 '

arises in connection with the small, transverse vibration of a

clamped plate. A commonJy used variational formulation of (11.36)

is

a-. 2
u -E H 0(), u - 0

(11.37)
Au Av dxdy = X uv dxdy, V v E H 2().

00

A finite element method based on (11.37) would require trial and

test space that were subspaces of H0 (0), and this would require

1- 1 .C -elements, i.e., piecewise polynomials that are C across

inter-element boundaries. In order to avoid this requirement we

will use a different variational formulation for (11.37), one that

permits the use of C0 -elements. We do, however, use (11.37) to

show that (11.36) has a sequence of eigenvalues

0 < 1 ""

and corresponding eigenfunctions

A%,
U1 'U2 .....

which can be chosen so that
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Au. Au. dxdy .Iu.u. dxdyJo J j.

1) Variational Formulation

Introduce the auxiliary variable or= -Au. Then (11.36) can

be written as a second order system:

a + Au , in C)

-a= ku, in C)

U =au 0on r.

Multiplying the first equation by p, the second by v, inte-

grating over 0, and integrating by parts leads to

0 upJcr dxdy +- Aup dxdy

fai dxdy - uV1 + v ds

upJc~ dxdy - Vu-Vp dxdy, IV ~p H1 (o

and

Iuv dxdy Aav dxdy

VVvdxdy - v ds

07rT-7v dxdy, V v H0i )

ppivV Thus we arrive at the variational formulation

S.... . %*. . .



UaE: H (0)H1(0), (ou) - (0,0)

(ai dxdy ( VU) V dxdy 0, V i E H (0)
(11.38) J J

IV7ov dxdy = - uv dxdy, V v H (Q).
G0

We derived (11.38) formally from (11.36). One can, however,

. easily make the argument rigorous with the aid of a well-known

regularity result: If w is the solution to

2Aw = f, in 0
A2 : 0, on F,

t-o

0 3where 0 is a convex polygon and f H (u), then w H (0)

and w1 3,0 Coif 0 cf. Grisvard [1985] and Kellogg and Osborn

[1975]. We assume Q is a convex polygon in the remainder of this

. subsection. Using this result we can show that if ( Au) is an

eigenpair of (11.36) arid ( - -Au, then I ,(T,u)) ,is an elgen-

pair of 11.3b!. and if is an eigenpair of (11.38),

then 'u ,s an egenpair cf 11 .3t) and , = -\u. (11.36) has

the t(rm " 2.1 3, w, ".

r.Fv
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B(1Pu) -- Vp.Vu dxdy.

It is easily seen that A is symmetric and that (11.1) and (11.2)

are satisfied. 5

(11.38) has eigenvalues

0 I  <- X 2  %.. / e

and corresponding eigenfunctions

(0 1 1 u 1 ), ( 2 u2 ),.... -

with a = -Au

I') Regularity of the Eigenfunctions

If (o,u) is an eigenfunction of (11.38) then, as we have

seen above, u is an eigenfunction of (11.36) and a = -Au, and

hence the regularity of (a,u) can be inferred from the regula-

rity properties of (11.36). For results on this later regularity

question we refer to Grisvard (19851 and Kellogg and Osborn [1975].

2) Discretization of (11.38) and Assessment of the Accuracy of

the Approximate Eigenpairs

As in Subsection B. above, our discretization will be via

(11.4). For our specific problem, a mixed method for the associ-

ated source problem has been studied by Glowinski [1973], Ciarlet

and Raviart [1974], Mercier [1974], and Falk and Osborn [1980].
4.

We will use the same trial and test spaces employed in those

papers.

Let r = (r = {Th} be a family of r-regular, q-quasiuniform

triangulations of Q. Then for p = 2,3,..., let

(11. 39a) Vh h "")"
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and f

p 1
(11.39b) Wh = S (Th) n H0 (0).

We then consider (11.4) with these choices. We will have approxi- -ev

mate eigenvalues and eigenfunctions

1,h N,h

and

1 ,h'U ,h} . ..( N,hUN,h ) '.

where N dim (Vh Wh). ..

Theorem 11.4. Let Vh and Wh  be as in (11.39) with p > 2 and

suppose the eigenfunctions of (11.36) belong to HP+M(Q). Then -

(11.40) Xkh - I Cp)h

and -p.

(11.41),iiukh - Uk!O,  - C(p)hp .

Proof. The symmetry of A and the validity of (11.1) and (11.2)

for problem (11.38) have already been noted.

The source problem (11.6) is uniquely solvable for each g ,

G = H (0). The unique solution is (a,u), where

Au 2

and

a = -Au

(cf. the derivation of (11.38)). The unique solvability of (11.7)

is easily checked.
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ITg - T~I 0 g s Ch 2 11Tg!! 3 ~

This, together with the regularity result mentioned above, gives

II(T - T h)gII 0'( : Ch 2 11 g 0,

F which proves (11.9). j
Thus, all of the hypotheses for Theorems 11.1 and 11.2 have

been verified for the problem under consideration. Using the

results in Falk and Osborn [1980, Section 3a], we have

II (T-T )gIIQ Ch~IITgjj~ 1 ~

and

from which we obtain

(11.42a) sI(S-S Ch) Q, ()~ ~

(11.42c) li(- h)I 0 01 Ch-2,

h H (O),H 0(0)

and

(31.42d) It (T-Th) Chp.
MH (0),H()

(11.40) follows immediately from Theorem 11.1 and (11.42), and

(11.41) follows from Theorem 11.2 and (11.42c).
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Remark 11.4. The estimates obtained in this subsection were first

obtained by Canuto (1978]. We note, however, that the estimation

techniques used here will yield an improvement over the estimates

of Canuto in the case when the eigenfunctions have low regularity.

Our method of proof does not yield any estimates for p = 1. For

this case, see Ishihara (1978 a,b]. % .-

3) Solution of Matrix Eigenvalue Problem '

See subsection A.3) above.

For further results in eigenvalue approximation by mixed

methods, and also by hybrid methods, we refer to Mercier, Osborn,

Rappaz, and Raviart (1981], Mercier and Rappaz [1978], and

Ishihara [1977].

Remark 11.5. We have seen in this Section and in Section 11 that

there are various methods available for the approximate calcula-

tion of the eigenvalues of a specific problem. For example, we

have analyzed two methods for the membrane problem. Furthermore,

this discussion, together with that in Section 3, shows that there

are many more possibilities. Clearly the rational choice of a

method for any particular concrete problem is important. The

effective choice of a method is complex, depending on many aspects

of the underlying problem.

D. A Mixed Method for a Problem in One Dimension with Rough Coef-

ficients

Consider the problem

=-(a(x)u')' = b(x)u, 0 < x <
(11.43)

u(O) = U(1)= 0.
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This is a special case of the problem (1.8), (1.9a) discussed in

Section 1. We will be especially interested here in the case in

which the coefficients a(x) and b(x) are rough functions. Such

problems arise in the analysis of the vibrations of structures with

rapidly varying material properties, of composite materials, for

example. In Section 3, we gave (11.43) the mixed formulation

(3.26) (or (3.27)). In this subsection we analyze a mixed method

based on (3.27).

Hence we consider the problem

(Cu) E: L2 (0,1)KH (O 1),(Cu) - (0,0)

1 1 r

a- dx - u' dx = 0, V v E L2 (0,1)
(11.44) a 1 1.PP

0 0
1 1

av' dx = buy x VvE H01(0,1),

where a(x) is of bounded variation and b(x) is measurable and

0 < a0 < a(x) !s a1 , 0 < b 0 b(x) - b .,

(11.44) is of the form (11.3) with

V = H = L2 (0,1),
4.-F1

W H '(0,1),
0a

G= L2(0,1), with (u,V)G buv dx,

0

A(aP) = - dx,

and
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B(a,v) = - cv' dx.
-0

%.

(A,(o,u)) is an eigenpair of (11.44) if and only if (X,u) is an

eigenpair of (11.43) and T = au'. We discretize (11.44) by let-

ting -r = {TM(1  ) be a mesh on [0,1], defining

(11.45a) Vh = (: T = a constant, I =1,...M(r))

and

(11.45b) Wh = {v v l o(O,1), viT 1 = a linear polynomial,

with h = h(T) = max diam T1 , and considering (11.4).

'- The eigenpairs (kh (ac'ul)) of (11.4) are then considered as

approximations to the eig'3npairs (X,(o,u)) of (11.44). Although

this approximation method satisfies the hypotheses of Theorem

11.1, a direct application of that result does not yield the best

possible estimate. We will employ an analysis that is parallel A

to, but different than, that used in the proof of Theorem 11.1. C-.'

The analysis begins by introducing the operators TTh G--*G

and SSh G--.V that are defined In (11.8). A is an eigenvalue

X of (11.44) if and only if X is an eigenvalue of T; the cor-

respondence between the eigenCurictions is give~n by (a',u)--u.

Likewise Xh is an eigenvalue of (11.4) if and only if h is

an eigenvalue of Th , with the correspondence between eigefl'unc-
-U'

tions given by (ah uh)q- - Ouh. IIT-ThGG-- O, as will be shown

later, so we may apply Theorem 7.2 to T and Th on the space

G. Let k be an eigenvalue of T. The eigenvalues of a prob- --

lem of the type (11.43) are simple and hence X is a simple
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eigenvalue of T. Thus one eigenvalue h of (11.4) converges to

A. By Theorem 7.2 we have

(11.46) - ht < C(I(lT- Th)uu) GI + !!(T-ThlUh G),

where u is any eigenfunction of T corresponding to '-1 with

.IUI1 G 1. We now proceed to analyze ((T-Th) , u)G. 1.*

From (11.6) we have

((T-Th)u'u)G = J bu(T-Th)u dx
(11.47) = -B(Su,(T-Th)U)

= A(Su,(S-Sh)u) + B(((S-Sh)uTu) - B(Su,(T-Th)u),

and from (11.6) and (11.7) we get

(11.48) 0 = A((S-Sh)ut) + B((S-Sh)uij) + B(t,(T-Th)u),
V 17 E: Wh E : Vh  '"

Combining (11.47) and (11.48) we get

((T-Th)UU)G = A((S-Sh)u,Su+t) + B((S-Sh)u,Tu+ri)

+ B(t-Su,(T-Th)u),

V 17'ZW r V
U ho hP

which, letting T = -ThU and = ShU, yields

((T-Th)U,U)G = A((S-Sh)U,(S+Sh)U)

(11.49)
= 2 A((S-Sh)u,Su)-A((S-Sh)u,(S-Sh)U). ...

Now, again using (11.6) and (11.7) we get

a((S-Sh)uSu) = -B((S-Sh)uTu)

= -B((S-Sh)U,Tu - (TU)),.
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where hTU is the Wh-interpolant of Tu, and hence, using

wheELhTU h Wh o

ShU[Tu - TU dx = 0
hhu

0~v

and (11.6) we have

(11.50) A((S-Sh)uSu) = -B(Su,Tu - hTu)
h1

bu[Tu - ZhTu]dx. .'

0

Finally, combining (11.49) and (11.50) we get

(11.51) ((T-Th)UU)G =2 bu[Tu - EhTuldx

0

1 2I (S-S h~
- dx

0 -1:

2k bu(u )dx
Ehu~d

0
1Ji(S-Sh)Ui 2-h

a dx~-A.

00Nusing (11.50) and (11.46) we get

Ix - hi -< C(I bu(u hU )dxi + a 0 1L2 .h -

(11.52) 0

+ II(T-Th)UIL
2

It remains to estimate the three terms on the right side of

(11.52).

Recall that uhu is the W h-interpolant of u. By a result

of Prosdorf and Schmidt [1981] we know that
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(11.53) !!u - U1 1 Ch 2 V 1 (u'),

where V (u') denotes the variation of u'. Recall that u is

an eigenfunction of (11.43) with LIuiIG = 1. Since a(x) is of

bounded variation, u' will be of bounded variation; in fact

1
(11.54) v0 (u) !< c,

where C = C(a 0 1alb 0 ,b1 ,V0 (a),X) depends on a 0 ,al,bo,b 1 ,V 0 (a),

and X. Also

(11.55) 1u!! < C.

Using Holders inequality, together with (11.53) - (11.55), we get

(11.56) 1 bu(u - ZhU)dx < bull - hUi{

!s Ch2V(a),

where C = C(aOa 1lbo,blV 0 (a),X).

Next we consider I(S-Sh)uIL and Ij(T-Th)uaL2 It is easily
h L2 h L2*

seen that the results in Falk and Osborn (1980] imply

(11.57) !!(S-Sh)u L 2 !!(T-Th)u!L 2 C(aofa I  b0  b I I)h.
2 2 0' 1 0 1' .,' "

Note that (11.57) shows that iT-Th1iGG -- 4O.

Finally, combining (11.52), (11.56), and (11.57) we have

Theorem 11.5. Suppose A is an eigenvalue of (11.43) (or of 6

(11.44)) and let Xh be an the approximate eigenvalue defined by

11.4 with Vh and Wh defined by (11.45). Then

1 2 t.. -.(11.58) IA - 1h' C(ao,al,bo,bl,Vo(a),A)h .
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The striking feature of estimate (11.58) i that the constant

C depends on the bounds ao,a 1 ,bO, and b1  and on V0 a), but

is otherwise independent of a(x) and b(x). This shows that the

approximation method is effective for problems with rough coeffi-

cients (cf. discussion of alternate variational formulations at the

end of Section 3). In fact, the rate of convergence indicated by

(11.58) is the same as that for the usual Ritz method for problems

with smooth coefficients. (11.58) was proved by Banerjee [1987].

The use of mixed methods for eigenvalue approximation for problems

with rough coefficients was first suggested by Nemat-Nasser [1972a,

1972b, 1974]. Rate of convergence estimates for several such mixed

method were derived by Babuska and Osborn (1978].

Remark 11.6. It is of interest to note that the variable h can

be eliminated from 11.4 in the present context (i.e., with the

choices for V,W,H,G,A,B,Vh , and Wh we have made in this sub-

section) leading to the problem

u h W h A

(11.59) 1 rh1
a uhdx = f bu v dx, V v c Wh.

dx
a

where a, is a step function with aIT , =

1....M('r). Thus (11.59) differs from the usual Ritz method only

in that the coefficient enters the calculation through its harmo-

nic averages over the subintervals of the mesh instead of through

its averages.
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Section 12. Methods Based on One Parameter Families of Varia-

tional Formulations .. ,

In our treatment of the membrane problem in Subsection 10.B..

the trial and test functions satisfied the essential boundary con-

dition u = 0 (cf. (10.42)). In fact, if one bases the approxima-

tion method on the usual variational formulation (10.39), one must

impose the boundary condition on the trial and test functions.

To avoid this, methods have been developed that use test and trial --

functions that are not required to satisfy essential boundary con- " -

ditiars. (See the discussion of essential and natural boundary

conditions in Section 3.) In this section we discuss two such.

methods. They are both based on one parameter family of variation-

al formulations. We will be rather brief and will not explicitly

discuss each of the steps 1), 1'), 2), and 3) of finite element

approximation outlined in Section 10.

A. The Least Squares Method
......... .,- %

Consider, as in Subsections 1O.B. and 12.B., the membrane z
problem

-Au = ku in 0

u = 0 on r =ao,

where 0 is a bounded, open set with boundary r, which, for the

sake of simplicity, we assume to be of class CD. Note that we are

not assuming 0 to be a polygon. (12.1) has eigenvalues -

0 < k OD 2 ''''
1 2

and eigenfunctions

u'U .. . "'" "
2
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We begin by introducing the least squares method for the cor-

responding source problem,

-w f in 0 "k.
(12.2) .' a.a-{w 0 on r,

which is usually given the variational formulation (se.! Remalk 12.1

for the reason for using complex functions here), ,.

J.

W E H (Q) Jfv

(12.3) Vw- dxdy fv dxdy, V v c H (0).

We now give (12.2) a different variational formulation. w solves ".

(12.2) if and only if

2w E7 H -'.':..

(12.4) AwAyv dxdy + p WV dxdy = fv dxdy, d
JJ]- Ja ,. a *...

v E H2 (0 ) , V 0 < h <1

where P= h 1 is a parameter that approaches x, as h--0.

To pass from (12.2) to (12.4) is immediate. To go from (12.4) to

(12.2) we proceed as follows. First take v H 2 (Q) to satisfy

{Av = Aw + f in 0

v =0 on r. - * ";.1

This chioce for v in (12.4) yields -Aw = f in Q. The equa- , .*
'% a-. %'i

tion in (12.4) then becomes

2
/. wv dx 0, V v H (o)to . . . •

which implies w = 0 on F" In (12.4) the boundary conditions
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w = 0 is not explicitly imposed. This is the major advantage of A

the formulation (12.4) over (12.3) for our purposes. We note that

w can also be characterized by an extremal property: the solu-

tion w of (12.4) is the unique minimizer of the functional

I-AV- f 2 dxdy + pl Ivi 2ds
o r :;::::

2
over v E H (0).

In order to discretize (12.4) we suppose we have a family r

( T-) = ('rh of triangulations of -, where 0' is some fixed

rectangle containing . Then let
S sp,2 H2

h S ( h = {u E (0') : ulT = a polynomial of

(3, jr e e p , V T h } ...

hp

and let Sh consist of the restrictions of functions in Sp '2 ( h) p,2 (T

to 0. The family Sh satisfies the following approximation

result: If p - 5, then

2

(12.5) inf htIv-xi1j, - Ch ivIt',, for 2 !5 t 5 p+1.
XSh J=O

See Ciarlet [1978] for a proof of (12.5). Then we define an

approximate solution wh to w by letting wh be the unique .. ..'

solution to

wh Sh

(12.6) rd - vddVv S-
Aw -Av dxdy + p w ds f v dxdy, V v S

wh is called the least squares approximation to w since it can

be alternately characterized as the unique minimizer of
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-V-f 2 dxdy + pV2ds

over v E S Bramble and Schatz [1970] proposed and analyzed

this method for p = Ph = h 3 The also showed p = h to be

the optimal choice for p.

Now we return to the eigenvalue problem (12.1). Proceeding

in a similar way we see that (12.1) has the variational formula-

tion

uE H2 (Q)

(12.7) 2
Au UV dxdy + p uv ds = uAv dxdy, V v e (Q)..Lu ~r %

(12.7) is then discretized by

I h complex, 0 # u h S Sh

(12.8) .%
AU dxdy + p uv ds -h uhV dxdy, V v E S

r o

(12.8) has eigenpairs (kj,hujh), j = 1,...,N, where N = dim Sh '

0If for f E H (0) we define Tf = w and Thf = wh where

w and wh are defined by (12.2) (or (12.4)) and (12.6), respec-hi

tively, then we easily see that (X,u) is an eigenpair of (12.1)

if and only if (p = I- ,u) is an elgenpair of T and (%hUh)

is an eigenpair of (12.8) if and only if (p = h uh) is an

eigenpair of Th. We will estimate the error in ( and .

thus in (Ah,Uh), by applying the results in Section 7. T and

Th are clearly compact on H (Q). We will show IIT-T hI---0 in

the next paragraph.
0

In order to apply Theorem 7.3 on H (0) we need estimates for
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((T-Th)U,U), !!(T-Th )u! 0 , and I!(TTh )u , where u is an
h h O, .... O" ,

eigenfunction of (12.1) corresponding to the eigenvalue A (or 1)

we are approximating. These estimates are all contained in Bramble

and Schatz [1970] (and also in Baker (1973]) for the choice p =

h 3. In their Corollary 4.1 take ' = 3/2, k = t-2, g = 0, ="

-s, and r = p+1 to get

I((T-Th),)O,Qt - chs+t lt_2I01 s , for
(12.9)

0 < s < p-3, 2 ! t ! p+1.

Taking s = 0 and t = 2 in (12.9) shows that IT-Th ?0--.0 Now

take s = p-3 and t = p+1 to obtain

(12.10) I((T-Th)0D,/0)OoI s Ch2 p 2 II 1! p_1  0 !1p _ -

take s = 0 and t =.p+l to obtain

I ((T-Th) )O, 1 5 chP+i11011 1p 1 I~ iO, ,"'\ -

and hence

(12 .1 1 ) 1I ( (T -T h ) O )!O0,() C h p 1 O p -l , 0'

and take s = p-3 and t = 2 to obtain

P--

1((T-Th)0,10)0 O 1 1(0,(T-T h  ),P)o I ChP- f~l , 110HO 11 0

and hence

(12.12) i(T-Th ))II00 < ChP-l1D.p- 3 ,-

Theorem 12.1. Suppose the approximate eigenpairs (A ,U,) are
j,h' J,h

defined by (12.8) with p = h and suppose the eigenfunctions of

(12.1) belong to Hp -1 (Q). Then

(12.13) IAk h - k I Ch 2 p - 2 .
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and

(12.14) Ukh - UklOQ s Ch p + .

Proof. Let k  be any eigenvalue of (12.1) and suppose its geo-

metric multiplicity is q, i.e., the geometric multiplicity of

Pk = XkI is q. Since T is selfadjoint, the ascent is one and

the algebraic multiplicity of pk is also q. q of the A.,h

will converge to A. Let Ik,h be one of them. Theorem 7.3 can

now be applied and (12.13) follows directly from (7.15) and (12.10)

- (12.12) since all of the eigenfunctions of (12.1) corresponding

to kk belong to H P-I). (12.14) follows from Theorems 7.1 and

7.4 and (12.11). U

Remark 12.1. Even though (12.1) is selfadjoint, (12.8) is a non-

selfadjoint (finite dimensinal) problem. Thus one needs the gene-

ral (not necessarily selfadjoint) theory in Section 7 to analyze

the least squares method. The nonselfadjointness of (12.8) is the

reason we have used complex function spaces in this analysis.

B. The Penalty Method

We will once more consider the membrane eigenvalue problem

(10.38) and assume the boundary r of o is of class C (cf.

also (12.1)). In Section 10 we gave this problem the variational

formulation 1

u I 0
(12.15) 1u,.(.).

a(u,v) = b(u,v), V v H 0)

where

(12.16a) a(u,v) = j u.Vv dxdy
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and % %

(12.16b) b(u,v) = uv dxdy.
Jo

Let us replace the boundary condition u = 0 on F in

(10.38) by u + v- = 0, i.e., let us consider the problem

{ -Au = ku in -'
(12.17) + i u 0 on F,

where p = Ih 1 is a parameter that approaches +4 as h--* 0.

It is easily seen that (12.17) has the variational form

u E HI(0)
(12.18)

wa (u,v) = Ab(u,v), V v H 1 (0),

where ,--

(12.19) a (uv) = Vu-Vu dxdy + v uv ds.

Note that in (12.18), in contrast to (12.15), we have not imposed

any constraint on either u or v. This is the case since

u+ 0- =0 is a natural boundary condition (cf. Section 3).

We now estimate the error between the eigenvalues and eigen- -.- ,'.

vectors of (12.15) and (12.18). Toward this end consider the cor-

responding source problems:

rAU = f in 0
(12.20) tu- n"

f 0 on F

and
Au = f in O 74'

(12.21) - i uon .
u+ TiO- = 0 on F . . -

We view (12.21) as an approximation to (12.20). Denoting by u0 .
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(respectively u ) the solution of (12.20) (respectively (12.21)),

we are interested in estimating u - u 0 . It is shown in Babuska

and Aziz (1973, Section 7.2) that

(12.22) U = U 0 -I +r,

where k is the solution of the problem

-At + k = 0 in 0

(12.23) au0
= - in 0

,%, ,%.

and is the solution to ,

H H1 (0)
(12.24) -1 1

La (R,v) = a( ,v), V v k H (0).

From (12.16), (12.19), and (12.24) we have

2
2i a (a kt=

-1 ; 1. . .:

H1 (I10) H (01

and hence (0 55

(12.25) lift 11 lk -' -
H (Q) H1 (0)

From (12.23) and (12.25) we obtain

(12.26) Iu - 1() "' 2V 1 k (

From (12.23) and regularity results for elliptic boundary value

problems we get ..>

(12.27) !!41 1 CIf i 0
H(Q) H(Q)

Combining (12.26) and (12.27) yields "
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(12.28) lu - uO11 O- 1

on(H 0 (H(QbH 0

If we now introduce the operators T and T on H (Q) by

Tf = u 0

and

T f =u , .

then (12.28) implies that

(12.29) I(T-T )fIHO s C fo .
4, 0( 01f ' % %

It is immediate that (A,u) is an elgenpair of (12.15) if an only

-1if (P = X ,u) is an eigenpair of T; likewise (A ,u ) is an

-1 1
eigenpair of (12.18) if and only if pip = (A ,u ) is an eigen-

pair of T . It thus follows immediately from Theorems 7.1 - 7.4

and (12.29) that

(12.30) C - -< C4." .

and

(12.31) Ilu - u ,5 H ( )

,.

where (Ajiuj) and (P u ) denote the eigenpairs of
J ,j' 4,j

(12.15) and (12.18), respectively. Note that (12.30) and (12.31)

are estimates of the same order for both the eigenvalue and eigen-

vector errors. This is in contrast to approximations we have ana-

lyzed previously in this article. An analysis of a one-dimensional

model problem shows that, for the type of approximations we are ' %

considering, the eigenvalue and eigenvector error is, indeed, of

the same order.

Next we consider the problem (12.18) and approximate it by a

209



finite element method, letting the resulting eigenpairs be

(I P,hDU ,j,h). Since u and v in (12.18) are taken in

HI(Q), we need not impose any boundary condition on the trial and a,,

test space Sh' If one now analyzes the error in the finite ele-

ment approximation of (12.18), selects 0 so that the error in

passing from (12.15) to (12.18) is of the same magnitude of that

incurred in the finite element approximation of (12.18), and then

combines the error estimates (12.30) and (12.31) with those for

the finit element approximations of (12.18), one obtains esti-
mates for the difference between (,u) and (A U

ii and(A,jh' p,jh.

We stress that the (Xwjh'u ) are calculated from a matrix

eigenvalue problem corresponding to trial and test spaces that are

not required to satisfy the essential boundary condition for the

membrane problem (12.1). The approximation method we have out-

lined is referred to as the penalty method.

We refer the reader to Babuska and Aziz [1973, Section 7.2]

for a detailed analysis of the penalty method for the source prob-

lem. Estimates for the errors in eigenvalue approximation can be

easily derived from the corresponding source problem estimates by

means of Theorems 7.1 - 7.4. Because this application of these

error estimates to the eigenvalue problem is similar to those dis-

cussed above and raises no new issues, we will not give a formal

statement of the results.

Remark 12.2. If 0 is a polygon, then the choice = corres-

ponds to satisfying the boundary condition on aO, i.e., con-

straining SP(T) to be SP(T), and the resulting method is iden-

tical with that discussed in the Subsection 1O.B. If F" is not
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polygonall then w= a will lead to the constraint sP(T) s -'p 'where consists of those u E ('r) which are zero on every

triangle which intersects r. The finite element solution then

solves the problem on 0 instead of 0, where 0 consists of

the union of all triangles which do not intersect r. Sometimes

the mesh is constructed so that Q -0 is as small as possible by

interpolating r by straight lines.

Remark 12.3. In practical computation (codes) the penalty method -.

(or some equivalent method) is often also used when 0 is a poly-

gon by taking v to be very large (say sp = 10 8 ). This is just

a way of imposing the essential boundary conditions in the code.

Remark 12.4. The least squares method and penalty method are

seldom used as a way to treat essential boundary conditions on a

curved boundary because of the difficulty in the computation of

a (u,v), which requires area integrations over triangles which

intersect the boundary. The usual approach is to use curvilinear

elements, which allow exact satisfaction of the boundary condition

in a similar way as when the domain is polygonal (cf. Remark 12.3). -

Let us end this section by noting some similarities and dif- .ze

ferences in the least squares and penalty methods.

Both methods circumvent essential boundary conditions by

reformulating the original problem in terms of a one para-

meter family of variational formulations. In both methods, -

the optimal value of the parameter depends on the mesh,

i.e., on h.

With the least squares method, the optimal value of the .

parameter (p = h - ) is independent of the solution.

* I%%
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This is related to the fact that the alternate variational

formulation characterizes the solution exactly for any

value of the parameter. In the case of the penalty

method,the optimal value of the parameter depends on the

mesh and the smoothness of the solution or the eigenfunc-

tion. This is related to the fact that the exact solution

does not exactly satisfy the one parameter family of for-

mulations for any value of the parameter V - + .

The least squares method employs C -elements (i.e., sub-

2spaces of H (0)), whereas the penalty method employs

C0 -elements (i.e., subspaces of H (0)). As we have pre-

0viously noted, C -elements are easier to construct than

C i-elements. "-Lv

C21
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Section 13. Concluding Remarks

A. We have illustrated the application of the general theory that

was presented in Chapter II by considering several important model

problems. It should be clear from the analysis of these model

problems how to treat a wide variety of problems. We have seen,

however, that the application of the general theory to a concrete

problem may require subtle analysis.

B. In Sections 10, 11, and 12 we have illustrated the main

* approach to finite element approximation of eigenvalue problems.

We have seen that there are many available methods and that their

basic theoretical properties can be established as an application

of the results in Chapter II. Nevertheless, the implementation of

these methods raises many other important questions; although we

cannot address these questions in detail, we now mention some of

them.

1) Which method is most effective for a specific problem?

What is the goal of the computation? We remark that sometimes high

accuracy is achieved for eigenvalue approximation, but that only

low accuracy is obtained for the approximation of other important ,

quantities such as the stresses, moments, or shear forces.

2) What types of meshes or adaptive mesh procedures are

desirable? How should the quality of the computed results be

assessed a posteriori? For a survey of results in this direction,

see Noor and Babuska (1987].

3) Which matrix eigenvalue solvers should be used? What

computer architecture is desirable (sequential, parallel)?

These questions are, of course, not restricted to eigenvalue
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computation. They also arise with finite element computation of

s.ource problems. Some of these questions may be addressed in

other articles in this Handbook. 
*@.p

C. The Ritz method, which was discussed in Section 10, is most

easily analyzed with the results of Section 8, specifically with

(8.44) - (8.46). Note that because of (8.32), (8.11) is satisfied

with ,13 = a and thus the major requirement on Sh is that it

have good approximation properties.

D. We have seen in Remark 11.2 that mixed methods for eigenvalue

approximation have the form of (8.10) and (8.14). Thus, if a 'l

method satisfies the hypotheses of Section 8, specifically (8.1), -'.:

(8.2), (8.3), (8.6), (8.11), and (8.13), then the method can also "' %.'

be analyzed with the results of Section 8. Most mixed methods, .'

however, fail to satisfy at least one of these hypotheses, and we

thus cannot rely on the results of Section 8. We now comment on

two of the examples discussed in Section 11 in regard to which

results in Chapter II their analysis is based on.

1) Consider first the mixed method discussed in Subsection

1I.A. for the membrane problem. It is easily seen that the varia- -[

tional formulation (11.24) satisfies (8.1), (8.2), and (8.3), but

that it does not satisfy (8.6). In Section 8, assumption (8.6) is

used to show that the operator T defined by (8.8) is compact.

0For our example, for (f,g) *- H(div,O)-H (0), :-

T(f,g) = (c ,u)

where u solves

H0(0 E, ()

I-A u =g in Q
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and 1 = Vu, and, by noting in particular the dependence of "

on g, we see that T H(div,Q)-H 0(Q)--+ H(div,Q)H 0(Q) is not

compact. Since T is (lot compact, T as defined by (8.16),

cannot converge to T in norm. Because of these facts, the

results of Section 7 do not apply (to this T). The analysis that

we used for this problem (cf. Theorem 11.1) is based on Section 7

and circumvents this difficulty by using a different operator,

namely T :H ()--4H (0) defined by Tg = u (cf. 31.8c).

As mentioned in Remark 7.7, results for noncompact operators

which parallel those in Section 7 have been proved by Descloux, A

Nassif, and Rappaz [1978a, 1978b], and one can, if fact, use them

to derive the estimates we obtained in Subsection 11.B, spec:ifi-

cally (11.32) and (11.33). We will not present the details of

this analysis but will comment t riefly on the applicability of the

results of Descloux, Nassif, and Rappaz [1978a, 1978b] to our prob-

lem.

For their results, T is not required to be compact and Th

is assumed to converge to T in the sense that

(13.1)
0

inf I(J,u)-( ,T)lH-- O for each (c;,u) E H(div,Q).H 0 '

?I - Sh=Vh Wh  
H

and

(13.2) 6

= sup '!(Th-T)(fg)l -0,
( f ,g) h W h  H(div,O)- 0)

H(divQ).H0 (o) as h- 0.

With Vh and Wh defined as in (11.31), (13.1) follows from the

215

% %1

d. ,?

.- ~-. C C %~ *~ *.~'*. * Co. o.



approximation result in Raviart and Thomas [1977].

We now verify (13.2), which is central point in any applica-

tion of the results of Descloux, Nassif, and Rappaz [1978a, "N

1987b]. For (fg) E Vh W let (au) = T(fg) and (ch,Uh) =

Vh h' h'
Th(f,g), where T and T are defined by (8.8) and (8.16),h h

respectively, for the problem discussed in Subsection 1l.B. We

know that u c H1(0), -Au = g, and a = Vu, and hence div a

g. Also, if g E Wh it is easily seen that div h = -g. Thus

I(T-T)(f,g)(! )I= !h ,Uh)-(Yu)H dlVO.-O(H(divo) H 0 ) ( H(div,O) H0 ) ' '

= Fdiv Oh div allO, + 11 h- 12

(13.3) + Uh -Uh 2 1/2
h 0 )J

!~~lf_ U2 2 1/2 . .,
h-) U+ h-U' 0. , ,

for (fg) - Vh Wh
h-h'

From the results in Falk and Osborn (1980] we have

a h- 0 Ch2u, Q

(13.4a) 0 ) 2,.
0o ',o,

and

i!Uh - '.iO , I Ch ull2 , .. ,
uh 0,0) h 2 ,0

(13.4b) 2
• C h g!: ..

Combining (13.3) and (13.4) we get .
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11(Th-T)(f,g) i 0 ChI1g1 0,0
H(div,Q)xH (0)

(13.5) <- Ch1 ( f, g)!! H ,v, .0(

for (fg) E Vh×Wh"

(13.2) follows directly from (13.5). -

2) Consider next the method discussed in Subsection 11.C for

the vibrating plate problem. The variational formulation (11.38)

for the problem does not satisfy (8.2) and (8.11). Note that the

method was analyzed by means of Theorem 11.1 which is based on

Theorem 7.3

Remark 13.1. The fact that many mixed approximation methods fail

to satisfy the usual hypotheses (cf. Babuska [1971, 1973] and

Brezzi (1974]) for variational approximation methods is an issue

for the approximation of source problems as well as eigenvalue

problems. The abstract results in Falk and Osborn [1980] have as

their main application the analysis of mixed methods which fail to

satisfy the usual hypotheses for variational approximation methods.

In this connection see also Babuska, Osborn, and Pitkaranta (1980],

where problem (11.38) is reformulated in terms of alternate spaces

with alternate (mesh dependent) norms so as to satisfy the usual

hypotheses. .
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Institute for Physical Science and Technology of the University of Maryland,-I
under the general administration of the Director, Institute for Physical

* Science and Technology. It has the following goals:

o To conduct research in the mathematical theory and computational
implementation of numerical analysis and related topics, with emphasis
on the numerical treatment of linear and nonlinear differential equa-
tions and problems in linear and nonlinear algebra.

o To help bridge gaps between computational directions in engineering,
physics, etc., and those in the mathematical community.

o To provide a limited consulting service in all areas of numerical WIN
mathematics to the University as a whole, and also to government
agencies and industries in the State of Maryland and the Washington
Metropolitan area.

0 o To assist with the education of numerical analysts, especially at the
postdoctoral level, in conjunction with the Interdisciplinary Applied

fMathematics Program and the programs of the Mathematics and Computer
Science Departments. This includes active collaboration with govern-

ment agencies such as the National Bureau of Standards.

0 To be an international center of study and research for foreign
students in numerical mathematics who are supported by foreign govern-

ments or exchange agencies (Fulbright, etc.)

Further information may be obtained from Professor I. Babuvka, Chairman,
Laboratory for Numerical Analysis, Institute for Physical Science and
Technology, University of Maryland, College Park, Maryland 20742.
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